Theory of Computation: Assignment 1 Solutions

Arjun Chandrasekhar

1. (a) For the function problem, we take two numbers (a, b) as input, and we output the greatest common divisor of a and b.
(b) For the decision problem, we take three numbers (a, b, k) as input. We output ACCEPT if $\operatorname{gcd}(a, b)=k$ and REJECT otherwise.
(c) Suppose we are given (a, b, k) as input. We use the function problem to compute $d=\operatorname{gcd}(a, b)$. We output ACCEPT if $d=k$ and REJECT otherwise
(d) Suppose we are given (a, b) as input. Assume without loss of generality that $a \leq b$. For $k=$ $a, a-1, \ldots, 1$, we use the decision problem to check if $\operatorname{gcd}(a, b)=k$. The first time we receive ACCEPT, we stop and output k.
2. The state diagram for M is as follows:

3. (a) $L=\{w \mid w$ contains at least three 1 s$\}$

(b) $L=\{w \mid w$ contains a the substring 0101$\}$

(c) $L=\{w \mid w$ is any string except 11 and 111$\}$

4. (a) The state diagram for L_{3} is as follows:

(b) For a given value of n, we can design a DFA $M_{n}=\left(Q_{n}, \Sigma, \delta_{n}, q_{s_{n}}, F_{n}\right)$ to recognize L_{n}. The formal definition of M_{n} is as follows:

- $Q_{n}=\{0,1, \ldots, n-1\}$ i.e. all possible remainders modulo n. The state keeps track of what our current remainder is.
- $\Sigma=\{1\}$
- If $k<n-1$, then $\delta(k, 1)=(k+1)$. Otherwise, $\delta(n-1,1)=0$. Basically, every time we read a new digit, the remainder gets incremented by 1 . However, if we are at remainder $n-1$ and we read another digit, we reset the counter back to 0 .
- $q_{s}=0$ - initially we start our counter at a remainder of 0
- $F=\{0\}$ - to accept, we need to be at remainder 0

