Theory of Computation: Assignment 1 Solutions

Arjun Chandrasekhar

- 1. (a) For the function problem, we take two numbers (a, b) as input, and we output the greatest common divisor of a and b.
 - (b) For the decision problem, we take three numbers (a, b, k) as input. We output ACCEPT if gcd(a, b) = k and REJECT otherwise.
 - (c) Suppose we are given (a, b, k) as input. We use the function problem to compute d = gcd(a, b). We output ACCEPT if d = k and REJECT otherwise
 - (d) Suppose we are given (a, b) as input. Assume without loss of generality that $a \leq b$. For $k = a, a 1, \ldots, 1$, we use the decision problem to check if gcd(a, b) = k. The first time we receive ACCEPT, we stop and output k.
- 2. The state diagram for M is as follows:

3. (a) $L = \{w | w \text{ contains at least three 1s} \}$

(b) $L = \{w | w \text{ contains a the substring } 0101\}$

(c) $L = \{w | w \text{ is any string except } 11 \text{ and } 111\}$

4. (a) The state diagram for L_3 is as follows:

- (b) For a given value of n, we can design a DFA $M_n = (Q_n, \Sigma, \delta_n, q_{s_n}, F_n)$ to recognize L_n . The formal definition of M_n is as follows:
 - $Q_n = \{0, 1, ..., n-1\}$ i.e. all possible remainders modulo n. The state keeps track of what our current remainder is.
 - $\Sigma = \{1\}$
 - If k < n-1, then $\delta(k, 1) = (k+1)$. Otherwise, $\delta(n-1, 1) = 0$. Basically, every time we read a new digit, the remainder gets incremented by 1. However, if we are at remainder n-1 and we read another digit, we reset the counter back to 0.
 - $q_s = 0$ initially we start our counter at a remainder of 0
 - $F = \{0\}$ to accept, we need to be at remainder 0

