Theory of Computation: Assignment 1

Arjun Chandrasekhar

Due Thursday, 01/27/2022 at 11:59 pm (50 points)

1. Given two integers a and b, the greatest common divisor (gcd) of a and b is the largest number that is a factor of both a and b. For example:

- $\operatorname{gcd}(5,15)=5$
- $\operatorname{gcd}(16,20)=4$
- $\operatorname{gcd}(9,16)=1$
- $\operatorname{gcd}(100,100)=100$

The problem of calculating the gcd of two numbers important in number theory and cryptography.
(a) (5 points) Express the gcd problem as a function problem and a decision problem
(b) (10 points) Show that if we had a crystal ball to solve the function problem, we could design an algorithm to solve the decision problem (and vice-versa)
2. (5 points) This problem is taken from Sipser exercise 1.3. Let M be a DFA whose formal description is $\left(\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{u, d\}, \delta, q_{3},\left\{q_{3}\right\}\right)$. The transition function δ is described by the following table:

	u	d
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{3}
q_{3}	q_{2}	q_{4}
q_{4}	q_{3}	q_{5}
q_{5}	q_{4}	q_{5}

Draw the state diagram for M.
3. The following problems are taken from Siper exercises $1.6 \mathrm{~b}, \mathrm{c}$ and h . For each language below, give a state diagram for a DFA that recognizes that language. In each case the alphabet is $\Sigma=\{0,1\}$.
(a) (5 points) $L=\{w \mid w$ contains at least three 1 s$\}$
(b) (5 points) $L=\{w \mid w$ contains the substring 0101$\}$
(c) (5 points) $L=\{w \mid w$ is any string except 11 and 111$\}$
4. Consider the alphabet $\Sigma=\{1\}$. Strings from this alphabet include $1,111,11111111111$, etc. This is called a unary alphabet, and languages on this alphabet are called unary numbers.
For any positive integer $n>0$, define the language $L_{n} \subseteq \Sigma^{*}$ to be the set of strings whose length is divisible by n. For example, $L_{3}=\{\epsilon, 111,111111,111111111, \ldots\}$.
(a) (5 points) Draw the state diagram for L_{3}
(b) (10 points) Prove that for all n, L_{n} is a regular language. For full credit, give the formal definition that describes how you would construct the correct DFA for a given value of n.

