
Theory of Computation: Assignment 10 Solutions

Arjun Chandrasekhar

1. For this problem, we will note that because L1 ∈ P and L2 ∈ TIME(nc), there exist machines M1 and
M2 which decide L1 and L2 respectively in time O(nc).

(a) To decide L1, we run M1 If it accepts, we reject; otherwise we reject. Because M1 runs in O(nc),
so will our algorithm. Thus, L ∈ TIME(nc).

(b) To decide L1∪L2 we run M1 and M2, and accept if either machine accepts. Because both machines
run in time O(nc), the overall runtime will be O(nc)+O(nc) = O(nc). Thus, L1∪L2 ∈ TIME(nc).

(c) To decide L1 ◦ L2, we will use the following algorithm

1. For each possible way of splitting up w = xy do the following:

a. Run M1 on x and M2 on y
b. If both machines accept, then accept w. Otherwise move on to the next split

2. If all splits failed, reject w

There are O(n) possible splits to try. Each split takes O(nc) to test, because both M1 and M2

run in O(nc). Thus, the overall runtime is O(n) ·O(nc) = O(nc+1). Thus, L1 ◦L2 ∈ TIME(nc+1)

2. To show that to show that P is closed under complement, union, and concatenation, we would need
to show that if L1, L2 ∈ P then L1, L1 ∪ L2, and L1 ◦ L2 are in P. We note that if L1, L2 ∈ P,
then L1, L2 ∈ TIME(nc) for some c. As problem 1 shows, this implies that L1 and L1 ∪ L2 are in
TIME(nc) ⊆ P, and L1 ◦ L2 ∈ TIME(nc+1) ⊆ P. Thus, L1, L1 ∪ L2, and L1 ◦ L2 are all in P, which
establishes closure under those three operations.

3. (a) The algorithm has in O(k) loop iterations. However, because k is represented in binary, the value
of k is exponential in the length of the input |k|. Thus, the algorithm really runs in O(2|k|), which
is clearly not polynomial.

(b) Following the hint, we compute lcm(a, b) =
a · b

gcd(a, b)
. We can use the Euclidean algorithm to

compute gcd(a, b) in polynomial time. We then accept if k = lcm(a, b), and reject otherwise. The
Euclidean algorithm runs in polynomial time. Multiplication, division, integer comparison can
also be calculated in polynomial time. Thus, the overall runtime is polynomial.

4. Following the hint, we will use dynamic programming. We will create a 1-D array of size B + 1. Each
element A[i] will tell us whether there is a combination that adds up to i. At the end, A[B] will tell
us whether there is a combination that adds up to B.

Formally, we’ll use the following algorithm:

1. A← array of length B + 1. Initialize A[0] to TRUE, all other elements to FALSE

2. For i = 1, . . . B do the following:

a. For j = 1 . . . n do the following:

i. If i ≥ xj and A[i− xj] = TRUE, set A[i] to TRUE

3. If A[B] = TRUE, accept 〈B, x1, . . . , xn〉. Otherwise, reject

1

The algorithm has O(B) outer loop iterations; because the input is unary, this is O(|〈B〉|). Each outer
loop iteration has O(n) inner loop iterations. Thus the overall runtime is polynomial.

5. Approach 1: We’ll give a greedy algorithm for checking if G is 2-colorable.

1. Pick any vertex and color it red

2. Repeat the following until the graph is colored or we reach a contraadiction

a. Color the neighbors of all red vertices green, and color the neighbors of all greeen
vertices red.
b. If there is a vertex that is a neighbor of both a red and green vertex, then we
can’t color it. Immediately reject 〈G〉.

3. If we were able to color the graph, accept 〈G〉

The following picture illustrates the algorithm

Every vertex and every edge is visited exactly once by the algorithm, thus the overall runtime is
O(m + n) where m is the number of vertices and n is the number of edges. Thus, 2-COLORING ∈ P.

Approach 2: We will convert the graph into a 2-SAT formula F such that F is satisfiable if and only
if G is 2-colorable.

Consider an edge (u, v). We want one of these two vertices to be red, and one of them to be green.
Now consider the formula (u ∨ v) ∧ (¬u ∨ ¬v). This formula is true if u and v have opposite truth
values.

To convert G into a formula F , we create a variable for every vertex u. We go through every edge
(u, v) and add (u ∨ v) ∧ (¬u ∨ ¬v) to the formula. Then we check if F is satisfiable. If it is, we color
all of the TRUE vertices red, and all the FALSE vertices green. The way we constructed our formula
ensures that adjacent vertices have opposite truth values, and thus opposite colors. Conversely, if G
is 2-colorable, we set all of the red variables to TRUE and the green variables to FALSE. Connected
vertices must opposite colors, so every (u ∨ v) ∧ (¬u ∨ ¬v) sub-formula will be satisfied.

2

Converting G into a formula F will take O(m) steps, where m is the number of edges. Then 2-SAT
can be solved in polynomial time. Thus, 2-COLORING ∈ P

3

