Theory of Computation: Assignment 11 Solutions

Arjun Chandrasekhar

1. Because L_{1} and L_{2} are in NP, there exist nondeterministic TMs M_{1} and M_{2} that recognize L_{1} and L_{2} respectively in time $O\left(n^{c}\right)$. There also exist deterministic verifiers V_{1}, V_{2} for L_{1} and L_{2} respectively that run in time $O\left(n^{c}\right)$.
(a) Approach 1: We'll construct a machine M to recognize $L_{1} \cup L_{2}$ in nondeterministic polynomial time. On input w, M nondeterministically guess whether to run M_{1} or M_{2} and accepts if the guessed machine accepts. Because nondeterministically guessing which machine to run takes $O(1)$ time, and because both machines run in nondeterministic time $O\left(n^{c}\right)$, the overall runtime is $O\left(n^{c}\right)$. Thus, $L_{1} \cup L_{2} \in \operatorname{NTIME}\left(n^{c}\right)$.

Approach 2: We'll construct a polynomial-time verifier V. The verifier takes as input a string w and two certificates c_{1}, c_{2}. V runs V_{1} on $\left(w, c_{1}\right)$, and then runs V_{2} on $\left(w, c_{2}\right)$. If either verifier accepts, we accept. Both certificates are polynomially bounded in length, so the overall length of $\langle c 1, c 2\rangle$ is polynomially bounded. Because both verifiers run in time $O\left(n^{c}\right)$, the overall runtime is $O\left(n^{c}\right)+O\left(n^{c}\right)=O\left(n^{c}\right)$. Thus, $L_{1} \cup L_{2}$ can be verified in time $O\left(n^{c}\right)$, meaning $L_{1} \cup L_{2} \in$ NTIME $\left(n^{c}\right)$.
(b) Approach 1: We'll construct a nondeterministic machine M to recognize $L_{1} \circ L_{2}$ in $O\left(n^{c}\right)$ time. On input w, M nondeterministically guesses how to split up $w=x y$. It then runs M_{1} on x and M_{2} on y and accepts if both machines accept. It takes $O(1)$ time to nondeterministically guess how to split up the string. After that, both M_{1} and M_{2} run in $O\left(n^{c}\right)$; thus the overall runtime is $O(1)+O\left(n^{c}\right)+O\left(n^{c}\right)$. Thus, $L_{1} \circ L_{2} \in \operatorname{NTIME}\left(n^{c}\right)$.

Note: It might be tempting to have M deterministically try all possible ways of splitting up $w=x y$. However, this will increase our runtime by a factor of $O(n)$, meaning our overall runtime will be $O\left(n^{c+1}\right)$. By taking advantage of nondeterminism we can reduce the runtime to $O\left(n^{c}\right)$.

Approach 2: We'll construct polynomial-time verifier V. The verifier takes four inputs: a string w, two certificates c_{1}, c_{2}, and a way of splitting up $w=x y$. The verifier checks that $x y$ is a valid way to split up w. It then checks that V_{1} accepts $\left(w, c_{1}\right)$, and it checks that V_{2} accepts $\left(w, c_{2}\right)$. It accepts if both verifiers accept.

Both certificates are polynomially bounded in length, so the overall length of $\langle c 1, c 2\rangle$ is polynomially bounded. It takes $O(n)$ time to verify that $x y$ is a valid split of w, and both verifiers run in time $O\left(n^{c}\right)$. Thus V runs in polynomial time. Thus, $L_{1} \circ L_{2}$ can be verified in time $O\left(n^{c}\right)$, meaning $L_{1} \circ L_{2} \in \operatorname{NTIME}\left(n^{c}\right)$.
(c) To prove that NP is closed under union and concatenation, we would need to show that if L_{1} and L_{2} are in NP, then $L_{1} \cup L_{2}$ and $L_{1} \circ L_{2}$ are also be in NP. If L_{1} and L_{2} are in NP, then L_{1} and L_{2} are in $\operatorname{NTIME}\left(n^{c}\right) \subseteq \mathrm{NP}$. for some constant c. From parts (a) and (b), we know that $L_{1} \cup L_{2}$ and $L_{1} \circ L_{2}$ are in $\operatorname{NTIME}\left(n^{c}\right) \subseteq$ NP. This proves that $L_{1} \cup L_{2}$ and $L_{1} \circ L_{2}$ are both in NP, thus establishing the desired closure properties.
2. (a) Suppose $L \in \mathrm{P}$. There is a machine M that recognizes L in deterministic polynomial time.

However, M is a nondeterministic machine that simply chooses not to use any nondeterminism. Thus M recognizes L in nondeterministic polynomial time. Thus, $L \in$ NP
(b) Because $L \in$ NP there exists a polynomial time verifier V such that $w \in L \Leftrightarrow(w, c)$ is accepted by V for some polynomial-length certificate c. We'll construct a machine M that recognizes L in exponential time. On string w, M simply tries out all possible certificates c. If V accepts (w, c) for any c, then we accept w.

Because the certificate c must be polynomial in length, we have to try at most $O\left(2^{n^{c}}\right)$ certificates. Each certificate can be verified in exponential (in fact, polynomial) time. Thus the overall runtime is exponential.
3. For this problem let n be the number of vertices and m be the number of edges in G.
(a) Approach 1: We'll construct a machine that recognizes VERTEX-COVER nondeterministic polynomial time. On input $\langle G, k\rangle, M$ nondeterministically guesses a vertex cover C of size k. It then verifies that every edge in the graph touches one of the vertices in C. Guessing C will take $O(k)$ steps; verifying that C is a valid vertex cover takes $O(m \cdot k)$ steps. Thus, the runtime is nondeterministic polynomial. Thus, VERTEX-COVER \in NP

Approach 2: We'll construct a verifier V that verifies VERTEX-COVER in polynomial time. Our verifier takes $\langle G, k\rangle$ as input; it also takes a vertex cover C as a certificate. The length of the certificate is $O(k)$ because C can't have more than k vertices. We then check that $|C|=k$ (which takes $O(k)$ steps), and we check that C touches every edge in G (which takes $O(k \cdot m)$ steps). Thus, we can verify a proposed vertex cover in polynomial. Thus, VERTEX-COVER \in NP
(b) First, suppose that C is a vertex cover. Let u, v be any two vertices in $V \backslash C$. We know that u and v cannot be connected by an edge, because every edge has at least one endpoint in C. Thus, $V \backslash C$ represents an independent set.

Next, suppose $V \backslash C$ is an independent set. Take any edge $u, v \in E$. Because $V \backslash C$ is an independent set, then either $u \notin V \backslash C$, or $v \notin V \backslash C$. This means that either $u \in C$ or $v \in C$; thus, u, v has at least one endpoint in C. The same argument applies to every other edge; thus, C is a vertex cover.
(c) Suppose we are given $\langle G, k\rangle$ as input. From part (b), we know that a set C is a vertex cover if and only if $V \backslash C$ is an independent set. Thus, G has an independent set of size k if and only if G has a vertex cover of size $n-k$. Thus, our reduction is

$$
\langle G, k\rangle \mapsto\langle G, n-k\rangle
$$

Yes maps to yes: Suppose G has an independent set I of size k. Then from part (b), we know that $C=V \backslash I$ forms a vertex cover of size $n-k$.

No maps to no: Suppose G has a vertex cover C of size $n-k$. Thne from part (b), we know that $I=V \backslash C$ forms a vertex cover of size $n-(n-k)=k$.

We can compute $n-k$ in polynomial time, thus the reduction is polynomial. This proves that IND-SET $\leq_{\text {poly }}$ VERTEX-COVER, which implies that VERTEX-COVER is NP-Hard (and thus NP-complete).

Figure 1 gives a diagram of what it means for VERTEX-COVER to be NP-Complete.

IND-SET is NP-Complete IND-SET $\leq_{\text {poly }}$ VERTEX-COVER $L \in N P$

If we can decide VERTEX-COVER in poly-time, we can decide any language in NP in poly-time!

Figure 1: Vertex cover is NP-complete
4. (a) Approach 1: We'll construct a machine that recognizes PARTITION in nondeterministic polynomial time. On input $S=\left(s_{1}, \ldots s_{n}\right)$, our machine nondeterministically guess a partition $T \subseteq S$ in $O(n)$ time. It then verifies that $\sum T=\sum S \backslash T$, which can be done in polynomial time. Thus, our machine recognizes L in nondetermiistic polynomial time, which establishes that PARTITION \in NP .

Approach 2: We'll construct a polynomial-time verifier V. The verifier takes $S=\left(s_{1}, \ldots s_{n}\right)$ as input. It also takes a certificate T, a subset of the numbers, as input. The length of the certificate is at most $O(|S|)$, which is polynomial. The verifier first checks that T is a proper subset of S, which can be done in polynomial time. It then adds up all of the numbers in T and all the numbers not in T and checks that the sums are equal. This can be done in polynomial time as well. Thus, we can verify the certificate in polynomial time. This establishes that PARTITION has a polynomial-time verifier, and thus PARTITION \in NP.
(b) First note that For the forward direction, suppose there is a combination $\left(s_{i}, s_{j}, \ldots s_{k}\right)$ that adds up to B. Then all of the remaining elements add up to $\left(\sum s_{i}-B\right)+T=\left(\sum s_{i}-B\right)+\left(2 B-\sum s_{i}\right)=B$. Thus, both the two subsets form a partition.

For the backward direction, suppose we have two subsets $R, S \backslash R$ that both add up to $\frac{\left(\sum S\right)+T}{2}=$ $\frac{\left(\sum s_{i}\right)+\left(2 B-\sum s_{i}\right)}{2}=\frac{2 B}{2}=B$. One of those subsets does not include the new number T. This subset represents a combination of the original numbers that adds up to B - thus, a solution to the original SUBSET-SUM instance.
(c) We will reduce from SUBSET-SUM. Suppose we start with $\left\langle B, s_{1}, s_{2}, \ldots s_{n}\right\rangle$. Following the hint, we compute $T=2 B-\sum s_{i}$. We then attempt to find a partition in $S \cup T=\left(s_{1}, s_{2}, \ldots x_{n}, T\right)$.

Yes maps to yes: Suppose S has a subset that adds up to B. Then from part (b), $S \cup T$ has a partition.

No maps to no: Suppose $S \cup T$ has a partition. Then from part (b), S has a subset that adds up to B.

Computing $T=2 B-\sum s_{i}$ takes polynomial time, thus the reduction is polynomial. Thus

$$
\left(B, s_{1}, \ldots s_{n}\right) \mapsto\left(s_{1}, \ldots s_{n}, 2 B-\sum s_{i}\right)
$$

is a poly-time reduction from SUBSET-SUM to PARTITION. This establishes that PARTITION is NP-hard, and thus NP-complete.

Figure 2 gives a diagram of what it means for PARTITION to be NP-Complete.

SUMSUM is NP-Complete SUBSUM $\leq_{\text {poly }}$ PARTITION
 $L \in N P$

If we can decide PARTITION in poly-time, we
can decide any language in NP in poly-time!

Figure 2: Partition is NP-complete

