
Theory of Computation: Assignment 11 Solutions

Arjun Chandrasekhar

1. Because L1 and L2 are in NP, there exist nondeterministic TMs M1 and M2 that recognize L1 and L2

respectively in time O(nc). There also exist deterministic verifiers V1, V2 for L1 and L2 respectively
that run in time O(nc).

(a) Approach 1: We’ll construct a machine M to recognize L1 ∪ L2 in nondeterministic polyno-
mial time. On input w, M nondeterministically guess whether to run M1 or M2 and accepts if
the guessed machine accepts. Because nondeterministically guessing which machine to run takes
O(1) time, and because both machines run in nondeterministic time O(nc), the overall runtime is
O(nc). Thus, L1 ∪ L2 ∈ NTIME(nc).

Approach 2: We’ll construct a polynomial-time verifier V . The verifier takes as input a string
w and two certificates c1, c2. V runs V1 on (w, c1), and then runs V2 on (w, c2). If either verifier
accepts, we accept. Both certificates are polynomially bounded in length, so the overall length of
〈c1, c2〉 is polynomially bounded. Because both verifiers run in time O(nc), the overall runtime
is O(nc) + O(nc) = O(nc). Thus, L1 ∪ L2 can be verified in time O(nc), meaning L1 ∪ L2 ∈
NTIME(nc).

(b) Approach 1: We’ll construct a nondeterministic machine M to recognize L1 ◦L2 in O(nc) time.
On input w, M nondeterministically guesses how to split up w = xy. It then runs M1 on x and
M2 on y and accepts if both machines accept. It takes O(1) time to nondeterministically guess
how to split up the string. After that, both M1 and M2 run in O(nc); thus the overall runtime is
O(1) + O(nc) + O(nc). Thus, L1 ◦ L2 ∈ NTIME(nc).

Note: It might be tempting to have M deterministically try all possible ways of splitting up
w = xy. However, this will increase our runtime by a factor of O(n), meaning our overall run-
time will be O(nc+1). By taking advantage of nondeterminism we can reduce the runtime to O(nc).

Approach 2: We’ll construct polynomial-time verifier V . The verifier takes four inputs: a string
w, two certificates c1, c2, and a way of splitting up w = xy. The verifier checks that xy is a valid
way to split up w. It then checks that V1 accepts (w, c1), and it checks that V2 accepts (w, c2). It
accepts if both verifiers accept.

Both certificates are polynomially bounded in length, so the overall length of 〈c1, c2〉 is polyno-
mially bounded. It takes O(n) time to verify that xy is a valid split of w, and both verifiers run
in time O(nc). Thus V runs in polynomial time. Thus, L1 ◦ L2 can be verified in time O(nc),
meaning L1 ◦ L2 ∈ NTIME(nc).

(c) To prove that NP is closed under union and concatenation, we would need to show that if L1 and
L2 are in NP, then L1 ∪ L2 and L1 ◦ L2 are also be in NP. If L1 and L2 are in NP, then L1 and
L2 are in NTIME(nc) ⊆ NP. for some constant c. From parts (a) and (b), we know that L1 ∪L2

and L1 ◦L2 are in NTIME(nc) ⊆ NP. This proves that L1 ∪L2 and L1 ◦L2 are both in NP, thus
establishing the desired closure properties.

2. (a) Suppose L ∈ P. There is a machine M that recognizes L in deterministic polynomial time.

1

However, M is a nondeterministic machine that simply chooses not to use any nondeterminism.
Thus M recognizes L in nondeterministic polynomial time. Thus, L ∈ NP

(b) Because L ∈ NP there exists a polynomial time verifier V such that w ∈ L ⇔ (w, c) is accepted
by V for some polynomial-length certificate c. We’ll construct a machine M that recognizes L in
exponential time. On string w, M simply tries out all possible certificates c. If V accepts (w, c)
for any c, then we accept w.

Because the certificate c must be polynomial in length, we have to try at most O
(
2n

c)
certificates.

Each certificate can be verified in exponential (in fact, polynomial) time. Thus the overall runtime
is exponential.

3. For this problem let n be the number of vertices and m be the number of edges in G.

(a) Approach 1: We’ll construct a machine that recognizes VERTEX-COVER nondeterministic
polynomial time. On input 〈G, k〉, M nondeterministically guesses a vertex cover C of size k. It
then verifies that every edge in the graph touches one of the vertices in C. Guessing C will take
O(k) steps; verifying that C is a valid vertex cover takes O(m · k) steps. Thus, the runtime is
nondeterministic polynomial. Thus, VERTEX-COVER ∈ NP

Approach 2: We’ll construct a verifier V that verifies VERTEX-COVER in polynomial time.
Our verifier takes 〈G, k〉 as input; it also takes a vertex cover C as a certificate. The length of the
certificate is O(k) because C can’t have more than k vertices. We then check that |C| = k (which
takes O(k) steps), and we check that C touches every edge in G (which takes O(k · m)steps).
Thus, we can verify a proposed vertex cover in polynomial. Thus, VERTEX-COVER ∈ NP

(b) First, suppose that C is a vertex cover. Let u, v be any two vertices in V \C. We know that u
and v cannot be connected by an edge, because every edge has at least one endpoint in C. Thus,
V \C represents an independent set.

Next, suppose V \C is an independent set. Take any edge u, v ∈ E. Because V \C is an independent
set, then either u /∈ V \C, or v /∈ V \C. This means that either u ∈ C or v ∈ C; thus, u, v has
at least one endpoint in C. The same argument applies to every other edge; thus, C is a vertex
cover.

(c) Suppose we are given 〈G, k〉 as input. From part (b), we know that a set C is a vertex cover if
and only if V \C is an independent set. Thus, G has an independent set of size k if and only if G
has a vertex cover of size n− k. Thus, our reduction is

〈G, k〉 7→ 〈G,n− k〉

.

Yes maps to yes: Suppose G has an independent set I of size k. Then from part (b), we know
that C = V \I forms a vertex cover of size n− k.

No maps to no: Suppose G has a vertex cover C of size n − k. Thne from part (b), we know
that I = V \C forms a vertex cover of size n− (n− k) = k.

We can compute n − k in polynomial time, thus the reduction is polynomial. This proves that
IND-SET ≤poly VERTEX-COVER, which implies that VERTEX-COVER is NP-Hard (and thus
NP-complete).

Figure 1 gives a diagram of what it means for VERTEX-COVER to be NP-Complete.

2

Figure 1: Vertex cover is NP-complete

4. (a) Approach 1: We’ll construct a machine that recognizes PARTITION in nondeterministic poly-
nomial time. On input S = (s1, . . . sn), our machine nondeterministically guess a partition
T ⊆ S in O(n) time. It then verifies that

∑
T =

∑
S\T , which can be done in polynomial

time. Thus, our machine recognizes L in nondetermiistic polynomial time, which establishes that
PARTITION ∈ NP.

Approach 2: We’ll construct a polynomial-time verifier V . The verifier takes S = (s1, . . . sn) as
input. It also takes a certificate T , a subset of the numbers, as input. The length of the certificate
is at most O(|S|), which is polynomial. The verifier first checks that T is a proper subset of
S, which can be done in polynomial time. It then adds up all of the numbers in T and all the
numbers not in T and checks that the sums are equal. This can be done in polynomial time as
well. Thus, we can verify the certificate in polynomial time. This establishes that PARTITION
has a polynomial-time verifier, and thus PARTITION ∈ NP.

(b) First note that For the forward direction, suppose there is a combination (si, sj , . . . sk) that adds up
to B. Then all of the remaining elements add up to (

∑
si−B)+T = (

∑
si−B)+(2B−

∑
si) = B.

Thus, both the two subsets form a partition.

For the backward direction, suppose we have two subsets R,S\R that both add up to
(
∑

S) + T

2
=

(
∑

si) + (2B −
∑

si)

2
=

2B

2
= B. One of those subsets does not include the new number T . This

subset represents a combination of the original numbers that adds up to B - thus, a solution to
the original SUBSET-SUM instance.

(c) We will reduce from SUBSET-SUM. Suppose we start with 〈B, s1, s2, . . . sn〉. Following the hint,
we compute T = 2B −

∑
si. We then attempt to find a partition in S ∪ T = (s1, s2, . . . xn, T).

3

Yes maps to yes: Suppose S has a subset that adds up to B. Then from part (b), S ∪ T has a
partition.

No maps to no: Suppose S ∪ T has a partition. Then from part (b), S has a subset that adds
up to B.

Computing T = 2B −
∑

si takes polynomial time, thus the reduction is polynomial.

Thus
(B, s1, . . . sn) 7→

(
s1, . . . sn, 2B −

∑
si

)
is a poly-time reduction from SUBSET-SUM to PARTITION. This establishes that PARTITION
is NP-hard, and thus NP-complete.

Figure 2 gives a diagram of what it means for PARTITION to be NP-Complete.

Figure 2: Partition is NP-complete

4

