
Theory of Computation: Assignment 2 Solutions

Arjun Chandrasekhar

1. First. we’ll make a DFA for L = {w|w starts with an a}

q1 q2

q3

a

b

a, b

a, b

Next we’ll make a DFA for L = {w|w has at most one b}

q4 q5 q6

a

b

a

b

a, b

Finally, we’ll combine them into a DFA for L using the intersection construction technique from class.

q1, q4

q2, q4 q2, q5 q2, q6

q3, q5 q3, q6

a

b

a

b

a

b

a, b

a

b

a, b

Some notes:

• Not all states are shown - just the ones that are reachable from the start state. If we were to
show the full DFA, there would be 3× 3 = 9 states.

1



• The start state is (q1, q4) because the fist machine starts in q1 and the second machine starts in
q4

• The accept states are (q2, q4) and (q2, q5), because the first machine accepts in q2, and the second
machine accepts in either q4 or q5

2. First we’ll make a DFA for the (simpler) complement language L = {w| contains either ab or ba as a substring}

1

2

3

4

a

b

a

b

b a

a, b

Then, we use the complement construction from class (i.e. flipping the accept/reject states) to construct
the DFA for the original language:

1

2

3

4

a

b

a

b

b a

a, b

3. We’ll use the technique from class, in which we use the state to keep track of the current carry value.
Transitions will represent adding the digits of a column. If we ever find an inconsistency, we go to a
reject state. At the end, we accept if and only if we are in the carry 0 state; this indicates that all of
the columns added up properly and we are not missing any leading digits.

2



carry 0 carry 1

fail

0
0
0

 ,
0

1
1

 ,
1

0
1

1
1
0



0
0
1

 ,
0

1
0

 ,
1

0
0

 ,
1

1
1


0

0
1



1
0
0

 .
0

1
0

 ,
1

1
1


0

0
0

 ,
1

0
1

 ,
0

1
1

 ,
1

1
0



Σ∗
3

Note that it is very important to be able to read the characters in reverse, because this lets us read
the digits from least significant to most significant digit.

4. For this problem, we need to show that if A and B are regular, then A⊕B is also regular.

Approach 1: We’ll construct a DFA to recognize A ⊕ B. We know that A and B are regular. Let
MA = (QA,Σ, δA, SA, FA) be a DFA that recognizes A, and let MB = (QB ,Σ, δB , SB , FB) be a DFA
that recognizes B. The following DFA M = (Q,Σ, δ, S, F ) will recognize A⊕B:

• Q = QA ×QB - each state is a combination of a state from MA and a state from MB

• Σ = Σ - the alphabet is the same

• δ((qA, qB), σ) = (δA(qA, σ), δB(qB , σ)). Some notes on this:

– The input to the transition function is always a state, and a symbol. The state is (qA, qB)
and the symbol is σ. In this case, each state is a combination of a state from MA and a state
from MB

– The output of the transition function is always a state; in this case, each state is a state from
MA and a state from MB .

– δ(qA, σ) applies MA’s transition function to MA’s current state qA and the current symbol σ.
Similarly, δ(qB , σ) applies MB ’s transition function to MB ’s current state qB and the current
symbol σ

• S = (SA, SB) - the starting state is a combination of MA’s start state and MB ’s start state.

• F = {(qA, qB)|qA ∈ FA or qB ∈ FB but not both} - we accept any combination of states for which
exactly one of the two machines is accepting.

Approach 2: We note that
A⊕B = (A ∩Bc) ∪ (Ac ∩B)

Regular languages are closed under complement, union, and intersection; therefore, regular languages
are closed under XOR.

5. We need to show that if A is regular, then EVERY-OTHER(A) is also regular.

Approach 1: We’ll construct a DFA to recognize EVERY-OTHER(A). We know that A is regular.
Let MA = (QA,Σ, δA, SA, FA) be a DFA that recognizes A. The following DFA M = (Q,Σ, δ, S, F )
will recognizes EVERY-OTHER(A):

3



• Q = QA × {ODD,EVEN}. Every state is a combination of a state from MA, and a “counter”
that keeps track of whether we are reading an even or an odd character.

• Σ = Σ - the alphabet is the same

• δ((qA,ODD), σ) = (δA(qA, σ),EVEN) - if it’s an odd character, then we transition MA’s state
according to the transition function, and move the counter to an even character.
δ((qA,EVEN), σ) = (qA,ODD). If it’s an even character we ignore it; we don’t transition MA’s
state, and we move the counter back to an odd character.

• S = (SA,ODD)

• F = FA × {ODD}

Approach 2: We note that

EVERY-OTHER(A) = PERFECT-SHUFFLE(A,Σ∗)

Regular languages are closed under PERFECT-SHUFFLE, and Σ∗ is a regular language. Therefore
EVERY-OTHER(A) is regular.

4


