
Theory of Computation: Assignment 3

Arjun Chandrasekhar

Due Thursday, 02/10/2022 at 11:59 pm (50 points)

1. (5 points) This problem is taken from exercise 1.8a in Sipser. Let

A = {w|w begins with a 1 and ends with a 0}

Let
B = {w|w contains at least three 1s}

First, design a 3-state NFA to recognize A. Then design a 4-state NFA to recognize B. Finally, design
a 8-state NFA to recognize A ∪B. In all cases the alphabet is Σ = {0, 1}.

2. (5 points) This problem is taken from exercise 1.9a in Sipser. Let

A = {w| the length of w is at most 5}

Let
B = {w| every odd position of w is a 1}

First, design a 6-state NFA to recognize A. Then, design a 2-state NFA to recognize B. Finally, design
an 8-state NFA to recognize A ◦B. In all cases the alphabet is Σ = {0, 1}.

3. (5 points) This problem is taken from exercise 1.10b. Let

A = {w|w contains at least two 0s and at most one 1}

First, design a 6-state NFA to recognize A. Then, design a 7-state NFA to recognize A∗. In both cases
the alphabet is Σ = {0, 1}.

4. (5 points) This problem based from problem 1.16a in Sipser. Convert the following NFA to an DFA
using the procedure described in class. The alphabet is {a, b, c}. For full credit your DFA must have
all of the possible states and transitions.

1 2

a, c
a, b

b, ε

5. (10 points) This problem is taken from problem 1.42 in Sipser. For languages A and B, the SHUFFLE
operation is defined as follows:

SHUFFLE(A,B) = {w = a1b1a2b2 . . . anbn|a1a2 . . . an ∈ A, b1b2 . . . bb ∈ B, each ai, bi ∈ Σ∗}

1



At first glance this looks like PERFECT-SHUFFLE. The difference is that with SHUFFLE, each ai, bi
is an entire word rather than a single letter. Put another way, with shuffle you don’t have to alternate
between A and B at each character; you can switch from one language to the other at any point in the
String.

As an example, let
A = {w|w is non-empty only contains 0s}

and let
B = {w|w is non-empty and only contains 1s}

• 010101 is in both PERFECT-SHUFFLE(A,B) and SHUFFLE(A,B)

• 001011 ∈ SHUFFLE(A,B), but 001011 /∈ PERFECT-SHUFFLE(A,B)

• 111111 is not in either PERFECT-SHUFFLE(A,B) or SHUFFLE(A,B) because no matter how
you slice it up, the A part will contain 1s

Prove that regular languages are closed under the SHUFFLE operation.

Hint: for PERFECT-SHUFFLE, we created a DFA that alternated between each of the two machines
after each character. For this problem you’ll want to create an NFA that does something similar, but
“guesses” when to alternate between machines.

6. This problem is based on problem 1.38 in Sipser. An all-NFA is a new type of automaton. Just like a
regular NFA, an all-NFA is defined by a 5-tuple (Q,Σ, δ, qs, F ). It performs computation in the same
way. The only difference is the acceptance criterion: the all-NFA accepts if all possible computation
paths lead to an accept state (we ignore computations that “die”). This is in contrast to a regular
NFA, which just needs a single accepting computation to accept the string.

As an example, consider the following state macine:

1

2

3

4 5

1

*

0, 1
*

1

*

0

1

• If this were an NFA, the string 111 would be accepted, because there exists a computation path
that leads to an accept state. However, if this were an all-NFA the string 111 would be rejected.
The computation can end in states 2, 3, 4, or 5 depending on what choices the all-NFA makes.
Because there exists a computation path that leads to a reject state, the all-NFA would reject
111.

• The string 001 is accepted, even if this is an all-NFA. The computation can end in states 3 or 5
depending on what choices the all-NFA makes. Each of these states is an accept state, so the all-
NFA accepts 011. Note that the all-NFA cannot reach state 4, which is an accept state. However,
this does not cause the all-NFA to reject. We don’t require the all-NFA to be able to reach every
accept state - we simply require that all of the potential final states are accept states.

2



• The string 000 is accepted even if this is an all-NFA. The computation can end only end in states
3 or 5, both of which are accept states. Note that it is possible for the all-NFA to move to state
5 and then die on the third character. However, we ignore computation paths that die.

An All-NFA is similar to a regualar NFA, however it is not exactly the same; its definition is not
identical. Thus, you cannot assume that it inherits every single property of a regular NFA.

(a) (10 points) Prove that a language L is regular if and only if L is recognized by an all-NFA.
Remember, there are two directions. Give a formal description for any machine you construct.

(b) (10 points) Use all-NFAs to prove that regular languages are closed under intersection - that is,
prove that if A and B are regular, then

A ∩B = {w|w ∈ A,w ∈ B}

is regular. For full credit your proof must make use of an all-NFA. You will not receive any credit
if you attempt to use De Morgan’s laws. You will also not receive any credit if you attempt to use
the Cartesian product construction to run two DFAs in parallel. Your proof must take advantage
of the unique properties of an all-NFA.

7. (10 points, extra credit) This problem is borrowed from Dr. John Glick at the University of San Diego.
Imagine Snoopy and Charlie are sitting at a table. On the table is a square tray with four glasses at the
corners. Charlie’s. goal is to turn all the glasses either right-side up or upside down. However, Charlie
is blindfolded and he is wearing mittens. He does not know the initial state of the glasses. If they are
initially all turned the same way, then Charlie automatically wins. In his turn, Charlie may grab one
or two glasses and turn them over; however, because of the blindfold and the mittens he cannot see or
feel whether the glasses he grabbed are right-side up or upside down. He can, however, choose whether
to grab adjacent glasses or diagonally opposite glasses (or just one glass). If the glasses are all turned
the same direction, Snoopy announces that Charlie has won. Otherwise, Snoopy may rotate the tray,
just to make Charlie’s goal harder.

Find the shortest sequence of actions by Charlie that is guaranteed to win the game, no matter how
Snoopy plays. Prove that your solution is correct and is the shortest possible.

First construct an all-NFA to represent the game. Then covert it to a DFA that is equivalent. Use this
to find the shortest sequence of moves, and to prove that your sequence is optimal. If you just write
down a sequence of moves, you will not get credit.

(Hint: Your all-NFA states should represent different “configurations” of the cups. Some configu-
rations are equivalent to each other, because Charlie can’t tell the difference between up/down and
because Snoopy can rotate the glasses. These equivalent configurations can be combined into the same
state, to reduce the size of your all-NFA.)

3


