Theory of Computation: Assignment 5 Solutions

Arjun Chandrasekhar

1. The "proof" claims that when you pump up, the 0 s and 1 s won't be equal and the new string will not be in the language. However, $0^{*} 1^{*}$ does not require the 0 s and 1 s to be equal - we just need to 0 s before the 1 s . Pumping y (which contains all 0 s) does not change this, thus the new string is still in $0^{*} 1^{*}$, and the pumping lemma is not contradicted.
2. (a) $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$

AFSOC L is regular with pumping length p. Take $w=0^{p} 1^{p} 2^{p}=\underbrace{0 \ldots 0}_{p} \underbrace{1 \ldots 1}_{p} \underbrace{2 \ldots 2}_{p}$. Clearly
$w \in L$ and $|w| \geq p$, so w should be pumpable. Split up $w=x y z$ where $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p, y$ contains only 0 s. When we pump up y, there will be more 0 s than 1 s and 2 s . The new string will not be in the language, which is a contradiction of the pumping lemma. Thus, L is not regular.
(b) $L=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$.

AFSOC L is regular with pumping length p. Take $w=a^{p} b a^{p} b a^{p} b=\underbrace{a \ldots a}_{p} b \underbrace{a \ldots a}_{p} b \underbrace{a \ldots a}_{p} b$. Clearly $w \in L$ and $|w| \geq p$, so w should be pumpable. Split up $w=x y z$ where $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p, y$ contains only leading a's. When we pump up y, there will be more leading a's than middle or trailing a's. The new string will not be in the language, which is a contradiction of the pumping lemma. Thus, L is not regular.

Note: It might be tempting to pick $w=a^{p} a^{p} a^{p}$, and argue that when we split it up and pump, only the leading a's will be pumped, and the string will not consist of three consecutive identical substrings. However, because this string consists of all a's, there are no "leading" or "trailing" a's; we can simply re-arrange the a's to try to balance out the three parts of the string..
To make this more concrete: let $w=a^{p} a^{p} a^{p}$. Split up $w=x y z$ such that $|y|>0$ and $|x y| \leq p$. If we pick $y=a a a$, then when we pump k times we will have the string

$$
a^{p+3(k-1)} a^{p} a^{p}
$$

At first it looks like the a's in the first part of the string will not match the a's in the last two parts. However, note that:

$$
a^{p+3(k-1)} a^{p} a^{p}=a^{p+(k-1)} a^{p+(k-1)} a^{p+(k-1)}
$$

This, the string $a^{p} a^{p} a^{p}$ is actually pumpable. By contrast, by picking $w=a^{p} b a^{p} b a^{p} b$, the b's act as a "fence" that prevent us from re-arranging/re-distributing the a's, and it makes it so that when we pump we only pump the leading a's.
(c) $L=\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$

AFSOC L is regular with pumping length p. Take $w=0^{p} 10^{p}=\underbrace{0 \ldots 0}_{p} 1 \underbrace{0 \ldots 0}_{p}$. Clearly $w \in L$ and $|w| \geq p$, so w should be pumpable. Split up $w=x y z$ where $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p, y$ contains only leading 0 s. When we pump up y, there will be more leading 0 s than trailing 0s. The new string will not be in the language, which is a contradiction of the pumping lemma. Thus, L is not regular.
3. (a) $L=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ is a palindrome $\}$

AFSOC L is regular with pumping length p. Take $w=0^{p} 10^{p}=\underbrace{0 \ldots 0}_{p} 1 \underbrace{0 \ldots 0}_{p}$. Clearly $w \in L$ and
$|w| \geq p$, so w should be pumpable. Split up $w=x y z$ where $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p$, y contains only leading 0 s . When we pump up y, there will be more leading 0 s than trailing $0 \mathrm{~s} ;$ thus it won't read the same forwards and backwards. The new string will not be in the language, which is a contradiction of the pumping lemma. Thus, L is not regular.
(b) $L=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ is not a palindrome $\}$

AFSOC L is regular with pumping length p. Following the hint, take $s=0^{p} 10^{p!+p}=\underbrace{0 \ldots 0}_{p} 1 \underbrace{0 \ldots 0}_{\text {lots of } 0 \text { s! }}$, which is not a palindrome. Clearly $w \in L$ and $|w| \geq p, w$ should be pumpable.
Split up $w=x y z$ where $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p, y$ must contain only leading 0 s. We now want to figure out a way to pump the string so the leading and trailing 0 s are equal.
Let's let i be the number of 0 s contained in x and let j be the number of 0 s contained in y. So the string looks like this

$$
\underbrace{0 \ldots 0}_{|x|=i} \underbrace{0 \ldots 0}_{|y|=j} \underbrace{z}_{\underbrace{\ldots 0}_{p-i-j}} \overbrace{0^{p!+p}}^{z}
$$

From this, we see that $x y^{n} z$ contains $i+n \times j+(p-i-j)$ leading 0 s.
Consider $n=\frac{p!}{j}+1=\frac{1 \times 2 \times \cdots \times(p-1) \times p}{j}+1$. Note that this is an integer because $1 \leq j \leq p$. What happens when we pump up n times? As noted above, the number of leading 0 s will be

$$
\begin{aligned}
i+n \times j+(p-i-j) & =i+\left(\frac{p!}{j}+1\right) \times j+(p-i-j) \\
& =i+p!+j+(p-i-j)=p!+p
\end{aligned}
$$

Lo and behold, this is also the number trailing 0 s (which were not affected by pumping)! Thus, we've turned our string into a palindrome; $x y^{n} z \notin L$, which is a contradiction of the pumping lemma. Thus, L is not regular.
(c) $L=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ is not a palindrome $\}$

AFSOC L is regular. Then L^{c} is regular, because regular languages are closed under complement. However, we proved in part (a) that $L^{c}=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ is a palindrome $\}$ is not regular. This is a contradiction, and we conclude that L is not regular.
4. PRIMES $=\left\{w \mid w \in \Sigma^{*}\right.$, the length of w is a prime number $\}$

AFSOC L is regular with pumping length p. Let q be a prime number that is greater than p. Take $w=1^{q}=\underbrace{1 \ldots 1}_{q \text { is prime }}$. Clearly $w \in L$ and $|w| \geq p$, so w should be pumpable.
Split up $w=x y z$, with $|y|>0$ (and also $|x y| \leq p$, although that won't be too important this time.) Let i be the number of 1 s contained in y. So the string looks like this

From this we see that $x y^{n} z$ contains $i \times n+(q-i)$ total 1 s .

Let's let $n=(q+1)$. Then the length of $x y^{n} z$ will be

$$
\begin{aligned}
i \times(q+1)+(q-i) & =q \cdot i+i+q-i \\
& =q \cdot i+q=q \cdot(i+1)
\end{aligned}
$$

Both q and $i+1$ are greater than 2 , so $q \cdot(i+1)$ cannot be a prime number. Thus, $x y^{n} z \notin L$, which is a contradiction of the pumping lemma. We conclude that L is not regular.

