Theory of Computation: Assignment 5

Arjun Chandrasekhar

Due Thursday, 02/24/2022 at 11:59 pm

1. (5 points) This problem is taken from exercise 1.30 in Sipser. Describe the error in the following "proof" that $0^{*} 1^{*}$ is not a regular language.

AFSOC $0^{*} 1^{*}$ is regular. Let p be the pumping length for $0^{*} 1^{*}$ given by the pumping lemma. Choose s to be the string $0^{p} 1^{p}$. You know that s is a member of $0^{*} 1^{*}$, and it can be split into $x y z$ such that $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p$, the $x y$ part contains only 0s. Because $|y|>0$, when we pump up we will increase the number of 0 s , and then the 0 s and 1 s won't be equal, meaning the new string will not be in the language. Thus you have a contradiction. So $0^{*} 1^{*}$ is not regular.
2. The following problems are taken from exercise 1.29 ab and problem 1.46a in Sipser. Prove that the following languages are not regular
(a) (5 points) $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
(b) (5 points) $L=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$. In this language, each string contains three consecutive copies of the same (smaller) string.
(c) (5 points) $L=\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$
3. This problem is based on problem 1.46 b in Sipser. A palindrome is a string that reads the same forwards and backwards, such as 001100, ABBA, racecar, and lonely tylenol.
(a) (5 points) Prove that the language $L=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ is a palindrome $\}$ is not regular.
(b) (10 points) Prove that the language $L=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ is not a palindrome $\}$ is not regular. For this problem, you must use the pumping lemma to get credit. (Hint: try using the string $0^{p} 10^{p!+p}$, where $p!=1 \times 2 \times \cdots \times(p-1) \times p$.)
(c) (5 points) Now give an alternate proof that $L=\left\{w \mid w \in\{0,1\}^{*}\right.$, w is not a palindrome $\}$ is not regular. Your proof should not use the pumping lemma; instead, it should use the result from part (a), as well as the fact that regular languages are closed under complement.
4. (10 points) Recall that a unary language is a language on an alphabet with just one symbol. Let $\Sigma=\{1\}$. Prove that the following language is not regular:

$$
\text { PRIMES }=\left\{w \mid w \in \Sigma^{*}, \text { the length of } \mathrm{w} \text { is a prime number }\right\}
$$

Examples of strings in PRIMES include $11,111,1111111,1^{53}$, etc.
(Hint: You can use pretty much any string $s=1^{q}$ where q is prime and bigger than the pumping length p. If y contains i s, then x and z contain $q-i$ s. Figure out how many times to pump y so that the total number of 1 s is no longer prime.)

