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1. There are infinitely many strings. So if we try to perform step 1 for every possible string, we will never
get to step 2 for any string. Thus, we may not finish all of the accepting coputations, and we won’t
print out every string in the language.

2. There are infinitely many settings, so it is not valid to tell the machine to reject if none of the settings
evaluate to 0. The best we can do is tell the machine to accept if any settings evaluate to 0, and accept
that it may loop forever if there are no such settings.

3. Suppose L is regular. Then there is a DFA D = (Q,Σ, δ, S, F ) that recognizes L. Following the hint,
we’ll construct a Turing machine that simulates D. The start state for M will be the start state for D.
Whenever M reads a character, it erases it, moves right, and transitions to whatever state the DFA
would have transitioned to. When the machine encounters a blank square, it checks if it is in one of
the DFA’s accepting states. If it is, then it accepts; otherwise it rejects.

Formally, our TM will be defined as a 7-tuple (QM ,ΣM ,ΓM , δM , SM , qA, qR) as follows:

• QM = Q∪ {qA, qR} - we have the same states as the DFA, along with a special accept and reject
state.

• ΣM = Σ - same input alphabet as the DFA

• ΓM = Σ ∪ {t} - the tape alphabet is the input alphabet along with the reserved “blank space”
symbol

• If δ(qi, σ) = qj , then our TM will include the transition δM (qi, σ) = (qj ,t, R). Every time the
TM reads a symbol, it erases the symbol, transitions to whatever state the DFA would transition
to, moves right.

• For all states q ∈ F , we add the transition δM (q,t) = (qA,t, R). Additionally, for all q /∈ F ,
we add the transition δM (q,t) = (qR,t, R). If we encounter a blank symbol, it means we have
reached the end of the input. We check whether the DFA would have accepted. If we are in a
DFA accept state, we transition to the TM accept state. Otherwise, we transition to the TM
reject state.

• SM = S - the TM starts in the same state that the DFA would start in.

• qA, qR represent the special accept and reject state of the TM. These are not part of the DFA
states.

4. This problem is taken from exercise 3.8 in Sipser. Give tape-level descriptions for Turing machines to
recognize the following languages on the alphabet Σ = {0, 1}

(a) The following machine will recognize L:

1. If the tape is empty, accept
2. Scan from left to right for a 0. If you don’t find it, reject; otherwise, erase it and move
to step 3
3. Scan from left to right for a 1. If you don’t find it, reject; otherwise, erase it and move
to step 1

(b) The following machine will recognize L:
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1. If the tape is empty, accept
2. Scan from left to right for a 0. If you don’t find it, reject; otherwise, erase it and move
to step 3
3. Scan from left to right for a 0. If you don’t find it, reject; otherwise, erase it and move
to step 4
4. Scan from left to right for a 1. If you don’t find it, reject; otherwwise, erase it and
move to step 1

(c) For this language we can simply take the machine from part (b) and flip the accept/reject states.

5. We showed in question 2 that any language that can be recognized by a DFA can be recognized by a
Turing machine. We showed in question 3 that Turing machines can recognize some languages that
cannot be recognized by any DFA (due to the pumping lemma). Thus, Turing machines are strictly
more powerful than

6. (⇒) First we’ll prove the forwards direction. Suppose L is recognized by a regular Turing machine M .
It may be tempting to say that M is a doubly infinite machine that simply chooses not to use part of
its tape, but this is not exactly true. That’s because when M is on its leftmost square, if it tries to
move left it will stay in place, whereas a proper doubly infinite TM would have moved left.

Instead, we will construct a doubly infinite machine M2 that simulates M . At the start of the com-
putation, M2 will write a special symbol $ to the left of the first input symbol. Then, during the
computation, if M2 ever encounters the $ symbol, it knows that it moved left at a point where the
original machine would have encountered its left boundary and been forced to stay in place. M2 will
immediately move right, thus staying within the original machine’s left boundary. Thus, L can be
recognized by a doubly infinite machine M2.

(⇐) Next we’ll prove the backwards direction. Suppose L is recognized by a doubly-infinite machine
M2. We’ll construct a regular Turing machine M2 that simulates M . At the start of the computation,
M will “shift” every symbol over by one square, and right the symbol $ on the left most square. This
lets the machine keep track of its left boundary, and know when it needs to make more room in the
left direction.

If M ever reads $, it knows that it encountered its left boundary, and it needs to make more room
in order to continue simulating M2’s infinite left hand side. M will once again “shift” all of the
current tape symbols right by one square, to make more room on the left hand side, and then continue
simulating M2. Because the right side of the tape is infinite, we can perform these shifts as many times
as we need to create as much room as we need on the left side.

Thus, L is recognized by a regular TM , and it is Turing-recognizable.

The following diagram illustrates how M simulates the doubly infinite machine M2
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