Theory of Computation: Assignment 7

Arjun Chandrasekhar

1. (a) Because A and B are decidable, there are machines M_{A} and M_{B} that that decide A and B, respectively. We'll design a machine to decide $A \circ B$.
2. M takes a string w as input
3. For all possible ways of splitting up $w=x y$ do the following:
a. Run M_{A} on x and M_{B} on y
b. If both machines accept, then M accepts w
c. If either machine rejects, move on to the next way of splitting up the string
4. If all possible splits were rejected, M rejects w

Because M_{A} and M_{B} is decidable, they will always halt; thus, M will halt as well.
(b) Because A and B are decidable, there are machines M_{A} and M_{B} that that decide A and B, respectively. We'll design a machine to decide $A \circ B$. We will try every way of splitting up the string, and see if M_{A} and M_{B} accept the two substrings; however, we have to be careful. If we try each split one at a time, we may get stuck on one looping split and never get to try out an accepting split.

1. M takes a string w as input
2. Nondeterministically guess how to split up $w=x y$
3. Run M_{A} on x and M_{B} on y
4. If both machines accept, then M accepts w
5. If either machine accepts, then M will not accept w (it may loop)

Because A and B are recognizable, they halt and accept on all strings that are in the language. Thus if $w \in A \circ B$ then at least one split will be accepted by both machines, so at least one computation path will accept.
Every nondeterministic Turing machine can be converted to a deterministic machine, thus $A \circ B$ is Turing recognizable.
Note: Instead of using nondeterminism, we can run all possible splits in parallel.
2. The formal language is as follows

$$
L=\{\langle D, R\rangle \mid D \text { is a DFA, } R \text { is a regex, } L(D)=L(R)\}
$$

Let M_{EQ} be a machine that decides $\mathrm{EQ}_{\mathrm{DFA}}$ - that is, it checks if two DFAs are equivalent. We can decide the language using the following machine M :

1. M takes $\langle D, R\rangle$ as input
2. Convert R to an equivalent DFA D_{2}
3. Run M_{EQ} on $\left\langle D, D_{2}\right\rangle$ - that is, check if they're equivalent
4. If M_{EQ} accepts $\left\langle D, D_{2}\right\rangle$, then M accepts $\langle D, R\rangle$
5. If M_{EQ} rejects $\left\langle D, D_{2}\right\rangle$, then M rejects $\langle D, R\rangle$
6. Let M_{EQ} be a machine that decides $\mathrm{EQ}_{\mathrm{DFA}}$ - that is, it checks if two DFAs are equivalent. We can decide $\mathrm{ALL}_{\text {DFA }}$ using the following machine M :
7. M takes $\langle D\rangle$ as input
8. Construct a DFA D_{2} that recognizes Σ^{*} (which is a regular language).
9. Run M_{EQ} on $\left\langle D, D_{2}\right\rangle$ - that is, check if they're equivalent
10. If M_{EQ} accepts $\left\langle D, D_{2}\right\rangle$, then M accepts $\langle D\rangle$
11. If M_{EQ} rejects $\left\langle D, D_{2}\right\rangle$, then M rejects $\langle D\rangle$
12. We will design a machine M to decide L as follows:
13. M takes $\langle D\rangle$ as input
14. Create a DFA D_{2} that recognizes the set of strings with more than four 1's
15. Create a DFA D_{3} that recognizes $L(D) \cap L\left(D_{2}\right)$
16. Check if $L\left(D_{3}\right)=\emptyset$. If so, accept $\langle D\rangle$. Otherwise, reject.

This checks that $L(D)$ has nothing in common with the set of strings that contain more than four 1's.
5. As noted in the hint, every string is in either \bar{A} or \bar{B}. Suppose $w \notin \bar{A}$ and $w \notin \bar{B}$. Then $w \in A \cap B$ but this is impossible since A and B are disjoint.
We also know that \bar{A} and \bar{B} are Turing-recognizable. Thus there exist machines $M_{\bar{A}}$ and $M_{\bar{B}}$ that recognize \bar{A} and \bar{B}. If $w \in \bar{A}$ then $M_{\bar{A}}$ is guaranteed to halt and accept w; similarly, $w \in \bar{B}$ then $M_{\bar{B}}$ is guaranteed to halt and accept w.
We will construct a machine M that separates A and B.

1. M takes w as input
2. Run $M_{\bar{A}}$ and $M_{\bar{B}}$ on w in parallel
3. If $M_{\bar{B}}$ accepts w, then M accepts w
4. If $M_{\bar{A}}$ accepts w, then M rejects w

Let $C=L(M)$ - that is, C is the set of strings that are accepted by M. We claim that C separates A and B, and C is decidable.
First we'll show that C separates A and B. Suppose $w \in A$. Then $w \in \bar{B}$, so $M_{\bar{B}}$ accepts w. Therefore M accepts w, so $w \in L(M)=C$. Thus, $A \subseteq C$.
Now suppose $w \in B$. Then $w \in \bar{A}$, so $M_{\bar{A}}$ accepts w. Therefore M rejects w , so $w \notin L(M)=C$. This means $w \in \bar{C}$. Thus, $B \subseteq \bar{C}$.
Finally, we show that C is decidable. To do this, we'll show that M (which recognizes C) always halts. As noted earlier, because \bar{A} and \bar{B} are disjoint, every string is in either \bar{A} or \bar{B}. Thus, either $M_{\bar{A}}$ or $M_{\bar{B}}$ accepts w. Thus, M will always halt.

