Theory of Computation: Assignment 7

Arjun Chandrasekhar

- 1. (a) Because A and B are decidable, there are machines M_A and M_B that that decide A and B, respectively. We'll design a machine to decide $A \circ B$.
 - **1.** M takes a string w as input
 - **2.** For all possible ways of splitting up w = xy do the following:
 - **a.** Run M_A on x and M_B on y
 - **b.** If both machines accept, then M accepts w
 - c. If either machine rejects, move on to the next way of splitting up the string
 - **3.** If all possible splits were rejected, M rejects w

Because M_A and M_B is decidable, they will always halt; thus, M will halt as well.

- (b) Because A and B are decidable, there are machines M_A and M_B that that decide A and B, respectively. We'll design a machine to decide $A \circ B$. We will try every way of splitting up the string, and see if M_A and M_B accept the two substrings; however, we have to be careful. If we try each split one at a time, we may get stuck on one looping split and never get to try out an accepting split.
 - **1.** M takes a string w as input
 - **2.** Nondeterministically guess how to split up w = xy
 - **3.** Run M_A on x and M_B on y
 - 4. If both machines accept, then M accepts w
 - 5. If either machine accepts, then M will not accept w (it may loop)

Because A and B are recognizable, they halt and accept on all strings that are in the language. Thus if $w \in A \circ B$ then at least one split will be accepted by both machines, so at least one computation path will accept.

Every nondeterministic Turing machine can be converted to a deterministic machine, thus $A \circ B$ is Turing recognizable.

Note: Instead of using nondeterminism, we can run all possible splits in parallel.

2. The formal language is as follows

$$L = \{ \langle D, R \rangle | D \text{ is a DFA}, R \text{ is a regex}, L(D) = L(R) \}$$

Let M_{EQ} be a machine that decides EQ_{DFA} - that is, it checks if two DFAs are equivalent. We can decide the language using the following machine M:

- **1.** M takes $\langle D, R \rangle$ as input
- **2.** Convert R to an equivalent DFA D_2
- **3.** Run $M_{\rm EQ}$ on $\langle D, D_2 \rangle$ that is, check if they're equivalent
- **4.** If $M_{\rm EQ}$ accepts $\langle D, D_2 \rangle$, then M accepts $\langle D, R \rangle$
- **5.** If $M_{\rm EQ}$ rejects $\langle D, D_2 \rangle$, then M rejects $\langle D, R \rangle$
- 3. Let $M_{\rm EQ}$ be a machine that decides $\rm EQ_{DFA}$ that is, it checks if two DFAs are equivalent. We can decide $\rm ALL_{DFA}$ using the following machine M:

- **1.** M takes $\langle D \rangle$ as input
- **2.** Construct a DFA D_2 that recognizes Σ^* (which is a regular language).
- **3.** Run $M_{\rm EQ}$ on $\langle D, D_2 \rangle$ that is, check if they're equivalent
- **4.** If $M_{\rm EQ}$ accepts $\langle D, D_2 \rangle$, then M accepts $\langle D \rangle$
- **5.** If $M_{\rm EQ}$ rejects $\langle D, D_2 \rangle$, then M rejects $\langle D \rangle$
- 4. We will design a machine M to decide L as follows:
 - **1.** M takes $\langle D \rangle$ as input
 - **2.** Create a DFA D_2 that recognizes the set of strings with more than four 1's
 - **3.** Create a DFA D_3 that recognizes $L(D) \cap L(D_2)$
 - **4.** Check if $L(D_3) = \emptyset$. If so, accept $\langle D \rangle$. Otherwise, reject.

This checks that L(D) has nothing in common with the set of strings that contain more than four 1's.

5. As noted in the hint, every string is in either \overline{A} or \overline{B} . Suppose $w \notin \overline{A}$ and $w \notin \overline{B}$. Then $w \in A \cap B$ - but this is impossible since A and B are disjoint.

We also know that \overline{A} and \overline{B} are Turing-recognizable. Thus there exist machines $M_{\overline{A}}$ and $M_{\overline{B}}$ that recognize \overline{A} and \overline{B} . If $w \in \overline{A}$ then $M_{\overline{A}}$ is guaranteed to halt and accept w; similarly, $w \in \overline{B}$ then $M_{\overline{B}}$ is guaranteed to halt and accept w.

We will construct a machine M that separates A and B.

- **1.** M takes w as input
- **2.** Run $M_{\overline{A}}$ and $M_{\overline{B}}$ on w in parallel
- **3.** If $M_{\overline{B}}$ accepts w, then M accepts w
- **4.** If $M_{\overline{A}}$ accepts w, then M rejects w

Let C = L(M) - that is, C is the set of strings that are accepted by M. We claim that C separates A and B, and C is decidable.

First we'll show that C separates A and B. Suppose $w \in A$. Then $w \in \overline{B}$, so $M_{\overline{B}}$ accepts w. Therefore M accepts w, so $w \in L(M) = C$. Thus, $A \subseteq C$.

Now suppose $w \in B$. Then $w \in \overline{A}$, so $M_{\overline{A}}$ accepts w. Therefore M rejects w, so $w \notin L(M) = C$. This means $w \in \overline{C}$. Thus, $B \subseteq \overline{C}$.

Finally, we show that C is decidable. To do this, we'll show that M (which recognizes C) always halts. As noted earlier, because \overline{A} and \overline{B} are disjoint, every string is in either \overline{A} or \overline{B} . Thus, either $M_{\overline{A}}$ or $M_{\overline{B}}$ accepts w. Thus, M will always halt.