Theory of Computation: Assignment 7

Arjun Chandrasekhar

Due Thursday, 03/24/2021 at 11:59 pm (50 points)

1. (a) (5 points) This problem is taken from problem 3.15b in Sipser. Prove that Turing-decidable languages are closed under concatenation.
(b) (5 points) This problem is taken from problem 3.16b in Sipser. Prove that Turing-recognizable languages are closed under concatenation.
2. (10 points) This problem is based on exercise 4.2 in Sipser. Consider the problem of determining whether a DFA and a regex are equivalent to each other (i.e. recognize the same language). Express this as a formal language, and then prove that it is decidable.
3. (10 points) This problem is based on exercise 4.3 in Sipser. Prove that the following language is decidable

$$
\mathrm{ALL}_{\mathrm{DFA}}=\left\{\langle D\rangle \mid D \text { is a DFA, } L(D)=\Sigma^{*}\right\}
$$

We are given a DFA description as input, and we want to check if the DFA accepts every string.
4. (10 points) Show that the following language is decidable

$$
L=\{\langle D\rangle \mid D \text { is a DFA that does not accept any string containing more than four 1's }\}
$$

Hint: the set of strings that contain more than four 1's is a regular language.
5. (10 points) This problem is based on problem 4.20 in Sipser. Let A and B be disjoint languages - that is, $A \cap B=\emptyset$. We say that a language C separates A and B if $A \subseteq C$ and $B \subseteq \bar{C}$. We say that A and B are recursively separable if there is a decidable language C that separates A and B.
Suppose that \bar{A} and \bar{B} are Turing-recognizable. Prove that A and B are recursively separable. (Hint: convince yourself that every string must be in either \bar{A} or \bar{B}. Use this to design a machine M that accepts strings in A and rejects strings in B.)

