Theory of Computation: Assignment 8 Solutions

Arjun Chandrasekhar

- 1. (a) We will show that we can enumerate all possible finite length homework assignments. We'll use the following procedure:
 - **1.** List all assignments with 0 characters
 - 2. List all assignments with just 1 character
 - 3. List all assignments with 2 characters
 - **4.** . . .

Eventually, any assignment with a finite number of symbols will be listed out.

- (b) AFSOC the set of infinite assignments is countable, i.e. we can list out the assignments A_1, A_2, \ldots . We will create a new assignment A^* as follows:
 - **1.** The first symbol of A^* is different from the first symbol of A_1
 - **2.** The second symbol of A^* is different from the second symbol of A_2
 - **3.** . . .

In general, the i-th symbol of A^* is different from the i-th symbol of A_i .

Because our assignments are allowed to be infinitely long, and because every symbol comes from the English alphabet, A^* is a valid assignment.

Note that, A^* disagrees with every other assignment A_i that was part of our enumeration. This means that A^* , which is a perfectly valid assignment, is not part of the enumeration. But then our enumeration was not complete - it didn't contain every possible assignment. This is a contradiction. We conclude that the set of infinite assignments is not actually countable.

- 2. AFSOC $\overline{\text{HALT}}$ is decidable. There is a machine \overline{H} that decides $\overline{\text{HALT}}$. We will construct a strange machine S that does the following:
 - **1.** S takes a TM description $\langle M \rangle$ as input
 - **2.** S runs \overline{H} on $\langle M \rangle \langle M \rangle$. That is, it uses \overline{H} to check if M loops on its own source code.
 - **3.** S "does the opposite" of \overline{H} .
 - **a.** If \overline{H} accepts $\langle M \rangle \langle M \rangle$, then S immediately halts.
 - **b.** If \overline{H} rejects $\langle M \rangle \langle M \rangle$, then S immediately goes into a loop.

Figure 1 gives a diagram of this machine.

Let's see what happens when S receives its own source code $\langle S \rangle$ as input

- **1.** S runs \overline{H} on $\langle S \rangle \langle S \rangle$. That is, it uses \overline{H} to check if S loops on its own source code $\langle S \rangle$
- **2.** S "does the opposite" of \overline{H}
 - **a.** If \overline{H} accepts $\langle S \rangle \langle S \rangle$, then S immediately halts.
 - **b.** If \overline{H} accepts $\langle S \rangle \langle S \rangle$, then S goes into a loop

If \overline{H} says that S loops on $\langle S \rangle$, then S immediately halts. If \overline{H} says that S halts on $\langle S \rangle$, then S goes into a loop. Either S is literally contradicting itself, or \overline{H} is not deciding $\overline{\text{HALT}}$ correctly. Either way, we have reached a contradiction. We conclude that $\overline{\text{HALT}}$ is undecidable.

Figure 2 gives a flowchart for how S ends up contradicting itself.

Figure 3 show how we can interpret the above proof as a form of $\overline{\text{HALT}}$.

Figure 1: A strange machine

Let's feed S its own source code

Figure 2: S receives its own source code as input.

Construct **S** by taking the "opposite" of the **diagonals** until we reach a **contradiction**

Figure 3: Diagonalizing $\overline{\text{HALT}}$