Theory of Computation: Assignment 9 Solutions

Arjun Chandrasekhar

1. $\mathrm{INF}_{\mathrm{TM}}=\{\langle M\rangle \mid L(M)$ is finite $\}$. AFSOC $\mathrm{INF}_{\mathrm{TM}}$ is decidable by some machine M_{I}. We'll construct a machine M_{A} that decides A_{TM} as follows:
2. M_{A} receives $\langle M, w\rangle$ as input
3. Create a machine P that does the following:
a. P takes a string s as input
b. Ignore s, and run M on w (these are both hard-coded constants)
4. Run M_{I} on $\langle P\rangle$ - that is, check if P recognizes an infinite language
5. If M_{I} accepts $\langle P\rangle$, then M_{A} accepts $\langle M, w\rangle$.
6. Otherwise if M_{I} rejects $\langle P\rangle$, then M_{A} rejects $\langle M, w\rangle$

Let's walk through why this works. Suppose M accepts w. Then P, which always runs M on w, will accept every string - so $L(P)$ is infinite. However, if M doesn't accept w, then P will never accept anything - so $L(P)$ is finite. Thus, if we can determine if $L(P)$ is finite, then we can determine if M accepts w.
However, we know that A_{TM} is undecidable! This is a contradiction; thus, we conclude that M_{I} does not exist, and INF $_{\mathrm{TM}}$ is undecidable.
Figure 1 gives a diagram of this reduction.
2. DIS $\left._{\text {TM }}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid L\left(M_{1}\right) \cap L\left(M_{2}\right)=\emptyset\right\}\right\}$. AFSOC DIS ${ }_{T M}$ is decidable by some machine M_{D}. We'll construct a machine M_{E} that decides E_{TM} as follows:

1. M_{E} receives $\langle M\rangle$ as input
2. Create a machine P that recognizes Σ^{*}
3. Run M_{D} on $\langle M, P\rangle$ - that is, check if M and P are disjoint
4. If M_{D} accepts $\langle M, P\rangle$, then M_{E} accepts $\langle M\rangle$
5. Otherwisse, if M_{D} rejects $\langle M, P\rangle$, then M_{E} rejects $\langle M\rangle$

Let's walk through why this works. The machine P recognizes Σ^{*}. This means it has something in common with every language - except the empty set! The only that $L(M) \cap L(P)=\emptyset$ is if $L(M)=\emptyset$. Thus, if we can determine whether $L(M)$ and $L(P)$ are disjoint, we can determine if $L(M)$ is empty. However, we know that E_{TM} is undecidable! This is a contradiction; thus we conclude that M_{D} does not exist, and DIS $_{\mathrm{TM}}$ is undecidable.
Figure 2 gives a diagram of this reduction.
3. $L=\{\langle M, D\rangle \mid M$ is a TM, D is a DFA, $L(M)=L(D)\}$. AFSOC L is decidable by some machine M_{L}. We'll design a machine M_{A} that decides $\mathrm{ALL}_{\mathrm{TM}}$ as follows:

1. M_{A} receives $\langle M\rangle$ as input
2. Create a DFA D that recognizes Σ^{*} (a regular language)
3. Run M_{L} on $\langle M, D\rangle$ - that is, check if $L(M)=L(D)=\Sigma^{*}$
4. If M_{L} accepts $\langle M, D\rangle$, then M_{A} accepts $\langle M\rangle$
5. Otherwise, if M_{L} rejects $\langle M, D\rangle$, then M_{A} rejects $\langle M\rangle$

$A_{\text {TM }}=\{<M, w>\mid M$ accepts $w\}$ $I N F_{T M}=\{<M>\mid L(M)$ is infinite $\}$

Figure 1: A_{TM} is reducible to $\mathrm{INF}_{\mathrm{TM}}$

Let's walk through why this works. We know that Σ^{*} is a regular language, so we can create a DfA to recognize it. We do just that in creating D. From there, it follows that $L(M)=\Sigma^{*} \Leftrightarrow L(M)=L(D)$. Thus if we can check if $L(M)=L(D)$, the we can check if $L(M)=\Sigma^{*}$.
However, we know that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable! This is a contradiction; we conclude that M_{L} does not exist, and M_{L} is undecidable.

Figure 3 gives a diagram of this reduction.
4. First, suppose $L \leq_{m} \mathrm{~A}_{\mathrm{TM}}$. We know that A_{TM} is Turing-recognizable, thus L is also Turingrecognizable since it reduces to a recognizable language.
Next, we will show that if L is Turing-recognizable, then $L \leq_{m} \mathrm{~A}_{\mathrm{TM}}$. If L is Turing-recognizable, then there is a machine M_{L} that recognizes L. This means that

$$
w \in L \Leftrightarrow M \text { accepts } \mathrm{w} \Leftrightarrow\langle M, w\rangle \in \mathrm{A}_{\mathrm{TM}}
$$

Thus, the reduction $f(w)=\langle M, w\rangle$ is a mapping reduction from L to A_{TM}
5. (a) If $L \leq_{m} \bar{L}$ then there is a computable function $f(w)$ such that $w \in L \Leftrightarrow f(w) \in \bar{L}$. We then see that

$$
w \in \bar{L} \Leftrightarrow w \notin L \Leftrightarrow f(w) \notin \bar{L} \Leftrightarrow f(w) \in L
$$

Thus, the same function $f(w)$ is also a mapping reduction from \bar{L} to L.
Note that you may also simply appeal to the result from class that if $A \leq_{m} B$ then $\bar{A} \leq_{m} \bar{B}$. The proof of that result is almost identical to the proof given above.

$$
\begin{gathered}
E_{T M}=\{<M, w>\mid L(M)=\varnothing\} \\
\text { DIS }_{\text {TM }}=\left\{<M_{1}, M_{2}>\mid L\left(M_{1}\right) \cap L\left(M_{2}\right)=\varnothing\right\}
\end{gathered}
$$

If we can decide DIS $_{\text {TM }}$, we can decide $E_{T M}$

Figure 2: E_{TM} is reducible to $\mathrm{DIS}_{\mathrm{TM}}$
(b) We are given that L is Turing-recognizable. We are also given that $L \leq_{m} \bar{L}$. As we showed in part (a), this implies that $\bar{L} \leq_{m} L$, meaning \bar{L} is also Turing-recognizable. If L and \bar{L} are both recognizable, then L is decidable.

Figure 3: $\mathrm{ALL}_{\mathrm{TM}}$ is reducible to L

