
Theory of Computation: Assignment 9 Solutions

Arjun Chandrasekhar

1. INFTM = {〈M〉|L(M) is finite}. AFSOC INFTM is decidable by some machine MI . We’ll construct a
machine MA that decides ATM as follows:

1. MA receives 〈M,w〉 as input

2. Create a machine P that does the following:

a. P takes a string s as input
b. Ignore s, and run M on w (these are both hard-coded constants)

3. Run MI on 〈P 〉 - that is, check if P recognizes an infinite language

4. If MI accepts 〈P 〉, then MA accepts 〈M,w〉.
5. Otherwise if MI rejects 〈P 〉, then MA rejects 〈M,w〉

Let’s walk through why this works. Suppose M accepts w. Then P , which always runs M on w, will
accept every string - so L(P ) is infinite. However, if M doesn’t accept w, then P will never accept
anything - so L(P ) is finite. Thus, if we can determine if L(P ) is finite, then we can determine if M
accepts w.

However, we know that ATM is undecidable! This is a contradiction; thus, we conclude that MI does
not exist, and INFTM is undecidable.

Figure 1 gives a diagram of this reduction.

2. DISTM = {〈M1,M2〉|L(M1) ∩L(M2) = ∅}}. AFSOC DISTM is decidable by some machine MD. We’ll
construct a machine ME that decides ETM as follows:

1. ME receives 〈M〉 as input

2. Create a machine P that recognizes Σ∗

3. Run MD on 〈M,P 〉 - that is, check if M and P are disjoint

4. If MD accepts 〈M,P 〉, then ME accepts 〈M〉
5. Otherwisse, if MD rejects 〈M,P 〉, then ME rejects 〈M〉

Let’s walk through why this works. The machine P recognizes Σ∗. This means it has something in
common with every language - except the empty set! The only that L(M) ∩ L(P ) = ∅ is if L(M) = ∅.
Thus, if we can determine whether L(M) and L(P ) are disjoint, we can determine if L(M) is empty.

However, we know that ETM is undecidable! This is a contradiction; thus we conclude that MD does
not exist, and DISTM is undecidable.

Figure 2 gives a diagram of this reduction.

3. L = {〈M,D〉|M is a TM, D is a DFA, L(M) = L(D)}. AFSOC L is decidable by some machine ML.
We’ll design a machine MA that decides ALLTM as follows:

1. MA receives 〈M〉 as input

2. Create a DFA D that recognizes Σ∗ (a regular language)

3. Run ML on 〈M,D〉 - that is, check if L(M) = L(D) = Σ∗

4. If ML accepts 〈M,D〉, then MA accepts 〈M〉
5. Otherwise, if ML rejects 〈M,D〉, then MA rejects 〈M〉

1



Figure 1: ATM is reducible to INFTM

Let’s walk through why this works. We know that Σ∗ is a regular language, so we can create a DfA to
recognize it. We do just that in creating D. From there, it follows that L(M) = Σ∗ ⇔ L(M) = L(D).
Thus if we can check if L(M) = L(D), the we can check if L(M) = Σ∗.

However, we know that ALLTM is undecidable! This is a contradiction; we conclude that ML does not
exist, and ML is undecidable.

Figure 3 gives a diagram of this reduction.

4. First, suppose L ≤m ATM. We know that ATM is Turing-recognizable, thus L is also Turing-
recognizable since it reduces to a recognizable language.

Next, we will show that if L is Turing-recognizable, then L ≤m ATM. If L is Turing-recognizable, then
there is a machine ML that recognizes L. This means that

w ∈ L⇔M accepts w ⇔ 〈M,w〉 ∈ ATM

Thus, the reduction f(w) = 〈M,w〉 is a mapping reduction from L to ATM

5. (a) If L ≤m L then there is a computable function f(w) such that w ∈ L ⇔ f(w) ∈ L. We then see
that

w ∈ L⇔ w /∈ L⇔ f(w) /∈ L⇔ f(w) ∈ L

Thus, the same function f(w) is also a mapping reduction from L to L.

Note that you may also simply appeal to the result from class that if A ≤m B then A ≤m B. The
proof of that result is almost identical to the proof given above.

2



Figure 2: ETM is reducible to DISTM

(b) We are given that L is Turing-recognizable. We are also given that L ≤m L. As we showed in
part (a), this implies that L ≤m L, meaning L is also Turing-recognizable. If L and L are both
recognizable, then L is decidable.

3



Figure 3: ALLTM is reducible to L

4


