Theory of Computation: Assignment 9 Solutions

Arjun Chandrasekhar

- 1. INF_{TM} = { $\langle M \rangle | L(M)$ is finite}. AFSOC INF_{TM} is decidable by some machine M_I . We'll construct a machine M_A that decides A_{TM} as follows:
 - **1.** M_A receives $\langle M, w \rangle$ as input
 - **2.** Create a machine *P* that does the following:
 - **a.** P takes a string s as input
 - **b.** Ignore s, and run M on w (these are both hard-coded constants)
 - **3.** Run M_I on $\langle P \rangle$ that is, check if P recognizes an infinite language
 - **4.** If M_I accepts $\langle P \rangle$, then M_A accepts $\langle M, w \rangle$.
 - **5.** Otherwise if M_I rejects $\langle P \rangle$, then M_A rejects $\langle M, w \rangle$

Let's walk through why this works. Suppose M accepts w. Then P, which always runs M on w, will accept *every* string - so L(P) is infinite. However, if M doesn't accept w, then P will never accept anything - so L(P) is finite. Thus, if we can determine if L(P) is finite, then we can determine if M accepts w.

However, we know that A_{TM} is undecidable! This is a contradiction; thus, we conclude that M_I does not exist, and INF_{TM} is undecidable.

Figure 1 gives a diagram of this reduction.

- 2. DIS_{TM} = { $\langle M_1, M_2 \rangle | L(M_1) \cap L(M_2) = \emptyset$ }. AFSOC DIS_{TM} is decidable by some machine M_D . We'll construct a machine M_E that decides E_{TM} as follows:
 - **1.** M_E receives $\langle M \rangle$ as input
 - **2.** Create a machine P that recognizes Σ^*
 - **3.** Run M_D on $\langle M, P \rangle$ that is, check if M and P are disjoint
 - **4.** If M_D accepts $\langle M, P \rangle$, then M_E accepts $\langle M \rangle$
 - **5.** Otherwisse, if M_D rejects $\langle M, P \rangle$, then M_E rejects $\langle M \rangle$

Let's walk through why this works. The machine P recognizes Σ^* . This means it has something in common with every language - *except the empty set!* The only that $L(M) \cap L(P) = \emptyset$ is if $L(M) = \emptyset$. Thus, if we can determine whether L(M) and L(P) are disjoint, we can determine if L(M) is empty.

However, we know that E_{TM} is undecidable! This is a contradiction; thus we conclude that M_D does not exist, and DIS_{TM} is undecidable.

Figure 2 gives a diagram of this reduction.

- 3. $L = \{\langle M, D \rangle | M \text{ is a TM}, D \text{ is a DFA}, L(M) = L(D)\}$. AFSOC L is decidable by some machine M_L . We'll design a machine M_A that decides ALL_{TM} as follows:
 - **1.** M_A receives $\langle M \rangle$ as input
 - **2.** Create a DFA D that recognizes Σ^* (a regular language)
 - **3.** Run M_L on $\langle M, D \rangle$ that is, check if $L(M) = L(D) = \Sigma^*$
 - **4.** If M_L accepts $\langle M, D \rangle$, then M_A accepts $\langle M \rangle$
 - **5.** Otherwise, if M_L rejects $\langle M, D \rangle$, then M_A rejects $\langle M \rangle$

Figure 1: A_{TM} is reducible to INF_{TM}

Let's walk through why this works. We know that Σ^* is a regular language, so we can create a DfA to recognize it. We do just that in creating D. From there, it follows that $L(M) = \Sigma^* \Leftrightarrow L(M) = L(D)$. Thus if we can check if L(M) = L(D), the we can check if $L(M) = \Sigma^*$.

However, we know that ALL_{TM} is undecidable! This is a contradiction; we conclude that M_L does not exist, and M_L is undecidable.

Figure 3 gives a diagram of this reduction.

4. First, suppose $L \leq_m A_{TM}$. We know that A_{TM} is Turing-recognizable, thus L is also Turing-recognizable since it reduces to a recognizable language.

Next, we will show that if L is Turing-recognizable, then $L \leq_m A_{TM}$. If L is Turing-recognizable, then there is a machine M_L that recognizes L. This means that

 $w \in L \Leftrightarrow M$ accepts $w \Leftrightarrow \langle M, w \rangle \in A_{TM}$

Thus, the reduction $f(w) = \langle M, w \rangle$ is a mapping reduction from L to A_{TM}

5. (a) If $L \leq_m \overline{L}$ then there is a computable function f(w) such that $w \in L \Leftrightarrow f(w) \in \overline{L}$. We then see that

$$w \in L \Leftrightarrow w \notin L \Leftrightarrow f(w) \notin L \Leftrightarrow f(w) \in L$$

Thus, the same function f(w) is also a mapping reduction from \overline{L} to L. Note that you may also simply appeal to the result from class that if $A \leq_m B$ then $\overline{A} \leq_m \overline{B}$. The proof of that result is almost identical to the proof given above.

Figure 2: E_{TM} is reducible to DIS_{TM}

(b) We are given that L is Turing-recognizable. We are also given that $L \leq_m \overline{L}$. As we showed in part (a), this implies that $\overline{L} \leq_m L$, meaning \overline{L} is also Turing-recognizable. If L and \overline{L} are both recognizable, then L is decidable.

Figure 3: ALL_{TM} is reducible to L