Theory of Computation: Assignment 9

Arjun Chandrasekhar

Due 04/07/2022 at 11:59 pm (50 points)

1. (10 points) Consider the following language

$$
\mathrm{INF}_{\mathrm{TM}}=\{\langle M\rangle \mid L(M) \text { is finite }\}
$$

We are given a TM description as input, and we want to determine if the machine can accept infinitely many strings. Prove that $\mathrm{INF}_{\mathrm{TM}}$ is undecidable. (Hint: reduce from A_{TM})
2. (10 points) Consider the following language.

$$
\left.\mathrm{DIS}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid L\left(M_{1}\right) \cap L\left(M_{2}\right)=\emptyset\right\}\right\}
$$

We are given two machines, and we want to check if the machines are disjoint - that is, they don't recognize any of the same strings.
Prove that DIS $_{\mathrm{TM}}$ is undecidable. (Hint: reduce from E_{TM}. Use the fact that \emptyset is the only language that is disjoint from Σ^{*}.)
3. (10 points) Consider the following language

$$
L=\{\langle M, D\rangle \mid M \text { is a TM, } D \text { is a DFA, } L(M)=L(D)\}
$$

We are given a TM description and a DFA description, and we want to determine if the two machines are equivalent. Note that this is different from $\mathrm{EQ}_{\mathrm{TM}}$ because one of the input machines is a DFA.
Prove that L is undecidable. (Hint: reduce from $\mathrm{ALL}_{\mathrm{TM}}$).
4. (10 points) This problem is taken from problem 5.22 in Sipser. Prove that a language L is Turingrecognizable if and only if $L \leq_{m} \mathrm{~A}_{\mathrm{TM}}$. For full credit make sure your proof includes both directions.
5. (a) (5 points) Prove that if $L \leq_{m} \bar{L}$ then $\bar{L} \leq_{m} L$
(b) (5 points) Prove that L is Turing-recognizable and $L \leq_{m} \bar{L}$ then L is decidable

