Theory of Computation: Final Exam

Arjun Chandrasekhar

Due Thursday, 12/16/2021 at 11:59 pm (50 points)

1. (10 points) We prove this in two directions. First, we show that if L is Turing-recognizable, then L can be recognized by a 2DTM. Let M_{L} be the TM that recognizes L. We will design a 2DTM $M_{L 2}$ to recognize L by simply simulating M_{L} and ignoring all of the non-input rows of the 2D grid. Additionally $M_{L 2}$ will place a special marker $\$$ to the left of the input. If the 2DTM ever encounters this symbol, it will immediately move right, to simulate the fact that M_{L} is supposed to stay in place if it ever tries to move past the leftmost tape square.
To prove the backwards direction, we show that if L is recognized by a 2DTM, then it can be recognized by a normal TM. Let $M_{L 2}$ be the 2DTM that recognizes L. We will design a machine M_{L} that simulates $M_{L 2}$. To do this, M_{L} will keep track of what row/column coordinate $M_{L 2}$ is at each point in time. It will have a special tape section that stores the machine's coordinate (we can treat the original starting point as $(0,0))$. Additionally, M_{L} will keep track of all of the non-empty rows that are in use by $M_{L 2}$. Each row of input will be tracked in a separate portion of the infinite 1D tape, with the various rows sections separated by a special symbol not part of the original tape alphabet. At every step, the TM will write and change its state as the 2DTM would. Based on whether the 2DTM is supposed to move up, down, left, or right, we will update the stored coordinate, and go to the corresponding section of the tape.
2. (10 points) Suppose L is Turing recognizable. There is a machine M_{L} that recognizes L. We will design a machine M_{D} that recognizes DROP-OUT $(() L)$ as follows:
3. M_{D} takes w as input
4. Try all possible ways of inserting a character at some position in w. In particular, try all possible characters σ, and for each character, try all positions i where σ could be inserted into w to create a new string w^{\prime}.
5. Run M_{L} on all possible w^{\prime}. Do this in parallel.
6. If any w^{\prime} are accepted, then accept w.
7. If none of the w^{\prime} are accepted, then our machine will either reject or loop forever.

If $w \in \operatorname{DROP}-O U T(L)$ then at least one way of inserting a character into w will create a new string w^{\prime} that is accepted by M_{L}. If $w \notin \operatorname{DROP}-O U T(L)$ then every w^{\prime} will be rejected or loop forever. This may lead to M_{D} looping forever, but it will not accept, which is all we need in order to simply recognize (and not decide) DROP-OUT (L).
3. We will decide the language using the following algorithm:

1. Create a DFA D_{3} that recognizes $L\left(D_{1}\right) \cap L\left(D_{2}\right)^{c}$.
2. Use a decider for $\mathrm{E}_{\mathrm{DFA}}$ to check if $L\left(D_{3}\right)=\emptyset$
3. If $L\left(D_{3}\right)=\emptyset$, then accept $\left\langle D_{1}, D_{2}\right\rangle$. Otherwise reject.

If $L\left(D_{1}\right) \subseteq L\left(D_{2}\right)$ then D_{1} should not accept any strings that are not accepted by D_{2}. Therefore $L\left(D_{1}\right) \cap L\left(D_{2}\right)^{c}$ should be empty. We check for this to decide whether $L\left(D_{1}\right)$ is contained in $L\left(D_{2}\right)$.
4. (10 points) AFSOC ALL HALT is decidable. Let M_{A} be a machine that decides ALL $_{\text {HALT }}$. We will use M_{A} to construct a machine M_{H} that decides HALT. M_{H} does the following:

1. M_{H} takes $\langle M, w\rangle$ as input.
2. Create a machine P that does the following:
a. P takes s as input
b. Ignore s and run M on w (which are hard-coded constants)
3. Use M_{A} to check if P halts on all inputs
4. If M_{A} accepts $\langle P\rangle$, then M_{H} accepts $\langle M, w\rangle$ 5. Otherwise, M_{H} rejects $\langle M, w\rangle$

Note that P always does the same thing, namely running M on w. So if M halts on w, then P will always halt. Otherwise, P will always loop. Thus, if we can decide whether P halts on all inputs, we can infer whether M halts on w.
However, we know that HALT is undecidable! We have arrived at a contradiction. We conclude that $\mathrm{ALL}_{\text {HALT }}$ must be undecidable.
5. (a) (10 points) $L \in \mathrm{P}$. We can decide it using the following algorithm:

1. Take $\langle G, k\rangle$ as input.
2. If $k>10$, reject $\langle G, k\rangle$
3. For each combination of vertices $S \subseteq V(G)$ of size k do the following:
a. Check if every pair of vertices $u, v \in S$ is connected.
b. If S is a clique of size k, then accept $\langle G, k\rangle$. Otherwise, continue to the next subset.
4. If no cliques were found, reject $\langle G, k\rangle$

Checking if $k \leq 10$ can be done in polynomial time. If $k \leq 10$, the number of vertex subsets that we have to check is at most $O\left(V^{10}\right)$. Checking if a subset of vertices forms a clique takes $O\left(V^{2} \cdot E\right)$ time. Thus, the overall runtime is polynomial.
(b) (10 points) L is NP-Complete. First we will show that $L \in$ NP by constructing a polynomial-time verifier V that does the following:

1. Take $\langle G, k, I\rangle$ as input, where $\langle G, k\rangle$ are the input to the original problem, and I is a proposed independent set.
2. If $k<10$, reject $\langle G, k, I\rangle$
3. Check if $|I|=k$. If not, reject $\langle G, k, I\rangle$
4. Check if I is a subgraph of G. If not, reject $\langle G, k, I\rangle$
5. Check if every pair of vertices $u, v \in I$ is disconnected.
6. If I is a valid independent set, accept $\langle G, k, I\rangle$. Otherwise, reject $\langle G, k, I\rangle$

The length of the certificate I is at most $O(k)$. It takes $O(k)$ time to check that I is a big enough independent set. It takes $O(V)$ time to verify that I is a subgraph of G. Finally, it takes $O\left(V^{2}\right)$ time to verify that I is a valid independent set. Thus, L can be verified in polynomial time.
Next we will show that L is NP-Hard by reducing from independent set. Our reduction will work as follows:

1. Take $\langle G, k\rangle$ as input
2. Create a graph G^{\prime} which is a copy of G along with 10 new nodes that are isolated from the rest of the graph.
3. Output $\left\langle G^{\prime}, k+10\right\rangle$

The reduction involves constructing G^{\prime} and calculating $k+10$, both of which can be done in polynomial time. Now we just need to prove the reduction is correct.

Yes maps to yes: Suppose G has an independent set I of size k. Then I along with the 10 new nodes forms an independent set of size $k+10 \geq 10$ in G^{\prime}.

No maps to no: Suppose G does not have an independent set of size k. The biggest independent set in G has size $j<k$. Then the biggest independent set in G^{\prime} will have size $j+10<k+10$.

