
Theory of Computation: Final Exam

Arjun Chandrasekhar

Due Thursday, 12/16/2021 at 11:59 pm (50 points)

1. (10 points) We prove this in two directions. First, we show that if L is Turing-recognizable, then
L can be recognized by a 2DTM. Let ML be the TM that recognizes L. We will design a 2DTM
ML2 to recognize L by simply simulating ML and ignoring all of the non-input rows of the 2D grid.
Additionally ML2 will place a special marker $ to the left of the input. If the 2DTM ever encounters
this symbol, it will immediately move right, to simulate the fact that ML is supposed to stay in place
if it ever tries to move past the leftmost tape square.

To prove the backwards direction, we show that if L is recognized by a 2DTM, then it can be recognized
by a normal TM. LetML2 be the 2DTM that recognizes L. We will design a machineML that simulates
ML2. To do this, ML will keep track of what row/column coordinate ML2 is at each point in time. It
will have a special tape section that stores the machine’s coordinate (we can treat the original starting
point as (0, 0)). Additionally, ML will keep track of all of the non-empty rows that are in use by ML2.
Each row of input will be tracked in a separate portion of the infinite 1D tape, with the various rows
sections separated by a special symbol not part of the original tape alphabet. At every step, the TM
will write and change its state as the 2DTM would. Based on whether the 2DTM is supposed to move
up, down, left, or right, we will update the stored coordinate, and go to the corresponding section of
the tape.

2. (10 points) Suppose L is Turing recognizable. There is a machine ML that recognizes L. We will
design a machine MD that recognizes DROP-OUT(()L) as follows:

1. MD takes w as input
2. Try all possible ways of inserting a character at some position in w. In particular, try all
possible characters σ, and for each character, try all positions i where σ could be inserted
into w to create a new string w′.
3. Run ML on all possible w′. Do this in parallel.
4. If any w′ are accepted, then accept w.
5. If none of the w′ are accepted, then our machine will either reject or loop forever.

If w ∈ DROP-OUT(L) then at least one way of inserting a character into w will create a new string
w′ that is accepted by ML. If w /∈ DROP-OUT(L) then every w′ will be rejected or loop forever.
This may lead to MD looping forever, but it will not accept, which is all we need in order to simply
recognize (and not decide) DROP-OUT(L).

3. We will decide the language using the following algorithm:

1. Create a DFA D3 that recognizes L(D1) ∩ L(D2)
c.

2. Use a decider for EDFA to check if L(D3) = ∅
3. If L(D3) = ∅, then accept ⟨D1, D2⟩. Otherwise reject.

If L(D1) ⊆ L(D2) then D1 should not accept any strings that are not accepted by D2. Therefore
L(D1) ∩ L(D2)

c should be empty. We check for this to decide whether L(D1) is contained in L(D2).

1

4. (10 points) AFSOC ALLHALT is decidable. Let MA be a machine that decides ALLHALT. We will use
MA to construct a machine MH that decides HALT. MH does the following:

1. MH takes ⟨M,w⟩ as input.
2. Create a machine P that does the following:

a. P takes s as input
b. Ignore s and run M on w (which are hard-coded constants)

3. Use MA to check if P halts on all inputs
4. If MA accepts ⟨P ⟩, then MH accepts ⟨M,w⟩ 5. Otherwise, MH rejects ⟨M,w⟩

Note that P always does the same thing, namely running M on w. So if M halts on w, then P will
always halt. Otherwise, P will always loop. Thus, if we can decide whether P halts on all inputs, we
can infer whether M halts on w.

However, we know that HALT is undecidable! We have arrived at a contradiction. We conclude that
ALLHALT must be undecidable.

5. (a) (10 points) L ∈ P. We can decide it using the following algorithm:

1. Take ⟨G, k⟩ as input.
2. If k > 10, reject ⟨G, k⟩
3. For each combination of vertices S ⊆ V (G) of size k do the following:

a. Check if every pair of vertices u, v ∈ S is connected.
b. If S is a clique of size k, then accept ⟨G, k⟩. Otherwise, continue to the next
subset.

4. If no cliques were found, reject ⟨G, k⟩

Checking if k ≤ 10 can be done in polynomial time. If k ≤ 10, the number of vertex subsets
that we have to check is at most O(V 10). Checking if a subset of vertices forms a clique takes
O(V 2 · E) time. Thus, the overall runtime is polynomial.

(b) (10 points) L is NP-Complete. First we will show that L ∈ NP by constructing a polynomial-time
verifier V that does the following:

1. Take ⟨G, k, I⟩ as input, where ⟨G, k⟩ are the input to the original problem, and I is a
proposed independent set.
2. If k < 10, reject ⟨G, k, I⟩
3. Check if |I| = k. If not, reject ⟨G, k, I⟩
4. Check if I is a subgraph of G. If not, reject ⟨G, k, I⟩
5. Check if every pair of vertices u, v ∈ I is disconnected.
6. If I is a valid independent set, accept ⟨G, k, I⟩. Otherwise, reject ⟨G, k, I⟩

The length of the certificate I is at most O(k). It takes O(k) time to check that I is a big enough
independent set. It takes O(V) time to verify that I is a subgraph of G. Finally, it takes O(V 2)
time to verify that I is a valid independent set. Thus, L can be verified in polynomial time.

Next we will show that L is NP-Hard by reducing from independent set. Our reduction will work
as follows:

1. Take ⟨G, k⟩ as input
2. Create a graph G′ which is a copy of G along with 10 new nodes that are isolated
from the rest of the graph.
3. Output ⟨G′, k + 10⟩

The reduction involves constructing G′ and calculating k + 10, both of which can be done in
polynomial time. Now we just need to prove the reduction is correct.

2

Yes maps to yes: Suppose G has an independent set I of size k. Then I along with the
10 new nodes forms an independent set of size k + 10 ≥ 10 in G′.

No maps to no: Suppose G does not have an independent set of size k. The biggest independent
set in G has size j < k. Then the biggest independent set in G′ will have size j + 10 < k + 10.

3

