
Theory of Computation: Midterm Exam Solutions

Arjun Chandrasekhar

1. (a) L = {a2nb2m|n,m ≥ 0} This language is regular. It can be described by the regular expression
R = (aa)∗(bb)∗

(b) (5 points) L = {a2nb2n|n ≥ 0} This language is not regular. AFSOC L is regular with pumping
length p. Consider the string w = a2pb2p. This string is in the language and its length is at least
p, so it should be pumpable. Let w be split up into three parts xyz such that |xy| ≤ p and |y| > 0.
This means that x and y will only contain a’s, and y will be non-empty. However, this means
that if we pump y, the a’s and b’s will not be equal. Thus the new pumped string will not be
in the language, which is a contradiction of the pumping lemma. We conclude that L is not regular.

Note: It might be tempting to use apbp as our string. However, if p is odd then this string is not
in the language. Hence we use a2pb2p because this is guaranteed to have an even number of each
symbol.

(c) L = {anbncn|n ≥ 3} This language is not regular. AFSOC L is regular with pumping length p.
Consider the string ap+3bp+3cp+3. This string is in the language and its length is at least p, thus
it should be pumpable. Let w be split into three parts xyz such that |xy| ≤ p and |y| > 0. This
means that x and y will only contain a’s and y will be non-empty. However, this means that
if we pump y, the a’s, b’s, and c’s will not be equal. Thus the new pumped string will not be
in the language, which is a contradiction of the pumping lemma. We conclude that L is not regular.

Note: It might be tempting to use apbpcp as our string. However, if p ≤ 3 then this string is not
in the language. Hence, we use ap+3bp+3cp+3 because this is guaranteed to have at least 3 copies
of each symbol.

(d) L = {anbncn|n ≤ 3} This language is regular. It can be described by the regular expression
R = ε ∪ abc ∪ aabbcc ∪ aaabbbccc. Alternately, we can write it as

R =

3⋃
i=0

aibici

Note that this may look like the previous problem; however because n is constrained to be at
most 3, the language is finite, which makes it regular. You may also worry that this language
is not regular because of the pumping lemma. However we can set the pumping length to be
p = 10. Every string in the language has length less than 10, so none of them are required to be
pumpable.

2. We simply note that BOTHWAYS(L) = L ∩ LR. Because regular languages are closed under reversal
and intersection, if L is regular then BOTHWAYS(L) must be regular.

3. (a) Suppose L is regular. We will construct a spooky expression S that also describes L.

1

Approach 1: Start with a regex R that describes L, and convert it into an equivalent spooky
expression S inductively.

Base case:

• case 1: R = a ∈ Σ. Then S = a is a spooky expression that describes L

• case 2: R = ε. Then S = ε is a spooky expression that describes L

• case 3: R = ∅. Then S = ∅ is a spooky expression that describes L

Inductive case: assume that every regular expression Ri of size ≤ n has an equivalent spooky
expression Si. Let R be a regular expression of size n+ 1 that describes L.

• case 1: R = R1∪R2. Then R1 and R2 both have size ≤ n. Thus there are equivalent spooky
expressions S1 and S2. Then the spooky expression S = (Sc

1 ∩ Sc
2)c is equivalent to R

• case 2: R = R1 ◦R2. Then R1 and R2 both have size ≤ n. Thus there are equivalent spooky
expressions S1 and S2. Then the spooky expression S = S1 ◦ S2 is equivalent to R

• case 3: R = (R1)∗. Then R1 has size ≤ n. Thus there is an equivalent spooky expressions
S1. Then the spooky expression S = (S1)∗ is equivalent to R.

Approach 2: Start with a DFA D that describes L, and convert it into an equivalent spooky
expression S. First, convert D into a GNFA G. Then, we will iteratively “rip” away states until
there are just two states and one transition remaining; the one remaining transition will be la-
belled with a spooky expression S that describes L.

When we initially convert the DFA to a GNFA, first we’ll add a special start state with an ε
transition to the original start state and ∅ transitions to all other states. We will also add a
special accept state; the original accept states will have ε transitions to this special accept state,
and all other states will have ∅ transitions to the special accept state. We will then make sure
that there is a transition between every pair of original states (including a loop from each original
state back to itself), and we need to make each of these transitions into a spooky expression. If
there is a transition between qi and qj that is labelled by only one character σ, we will label the
transition in the GNFA with the spooky expression S = σ. If the transition between qi and qj is
labelled by multiple characters σ1, σ2, . . . , σn, we will label the transition in the GNFA with the
spooky expression S = (σc

1 ∩ σc
2 ∩ · · · ∩ σc

n)c (which is equivalent to σ1 ∪ σ2 ∪ · · · ∪ σn). If the
transition between qi and qj is missing in the original DFA, we will add an ∅ transition in the
GNFA.

Now we need to explain how to rip away states. Recall that for regular expressions, when we
“rip” away a state qrip, we need to repair the transitions between each pair of remaining states qi
and qj . Before we rip away qrip, the neighborhood around qi and qj looks like this:

qi

qrip

qj

S1

S2

S3

S4

Here, S1 is the spooky expression that takes us from qi to qrip, S2 is the spooky expression that
takes us from qrip back to itself, S3 is the spooky expression that takes us from qrip to qj , and S4

is the spooky expression that takes us from qi to qj directly.

2

When we “rip” the state qrip, we need to repair the transition from qi to qj so that the same set
of strings take us from qi to qj . With regular expressions, we would repair it as follows:

qi qj
(S1 ◦ S∗2 ◦ S3) ∪ S4

However, ∪ is not a spooky expression operation. Luckily, we can use complement and intersection
to achieve the same effect as union. In particular, A ∪ B = (Ac ∩ Bc)c So when we repair the
transition from qi to qj , we will do so as follows:

qi qj
((S1 ◦ S∗2 ◦ S3)c ∩ Sc

4)

Thus, we will keep “ripping” states and repairing each remaining transition until there is just one
transition remaining. The spooky expression labelling this transition describes the language of
the original DFA. Thus, every regular language can be described by a spooky expression.

(b) Suppose L is described by a spooky expression S. We will show how to inductively (or if you
prefer, recursively) construct an NFA to recognize L.

Base case:

• case 1: S = a ∈ Σ. Then the following NFA will recognize L

1 2
a

• case 2: S = ε. Then the following NFA will recognize L

1

• case 3: S = ∅. Then the following NFA will recognize L

1

Inductive case: Assume that for every spooky expression Si of size n, we can construct an
NFA Ni (and by extension, a DFA Di) that recognizes L(Si). Let L be described by a spooky
expression of size n+ 1

• case 1: S = S1 ∩ S2. Inductively, we can construct DFAs D1 and D2 that recognize L(S1)
and L(S2), respectively. Then we can use the Cartesian product technique to construct a
DFA D to recognize L(D1) ∩ L(D2) = L(S1) ∩ L(S2) = L(S)

• case 2: S = Sc
1. Inductively, we can construct a DFA D1 that recognizes L(S1). Then we can

flip the accept and reject states to construct a DFA D that recognizes L(D)c = L(S1)c = L(S)

• case 3: S = S1 ◦ S2. Inductively, we can construct DFAs D1 and D2 that recognize L(S1)
and L(S2), respectively. We can then construct an NFA N to recognize L(D1) ◦ L(D2). We
will add ε transitions from the accept states of D1 to the start state of D2. The start state of
N is the start state of D1 and the accept states of N are the accept states of D2. This NFA
recognizes L(D1) ◦ L(D2) = L(S1) ◦ L(S2) = L(S)

• case 4: S = (S1)∗. Inductively, we can construct a DFA D1 that recognizes L(S1). We can
then construct an NFA N that recognizes L(D1)∗. We will add a special start state s0 that is
also an accept state. This start state will have an ε transition to the start state of D1. Every
accept state of D1 will have an ε transition to the start state of D1. This NFA recognizes
L(D1)∗ = L(S1)∗ = L(S)

3

4. Approach 1: Construct a state machine. Let DA = (QA,Σ, δA, SA, FA) be a DFA that recognizes
A, and let DB = (QB ,Σ, δB , SB , FB) be a DFA that recognizes B. We will construct a DFA D =
(Q,Σ, δ, S, F) to recognize XOR-SHUFFLE(A,B) as follows:

• Q = QA × QB × {A,B}. Every state is a combination of three variables: a state from machine
A, a state from machine B, and a counter that keeps track of whose turn it is to read a symbol.

• The alphabet Sigma stays the same

• The transition function is defined as follows:

– δ((qA, qB , A), σ) = (δA(qA, σ), qB , B). If it’s A’s turn to read, we transition A’s state while
keeping B the same. To transition A’s state, we apply A’s transition function. After reading
the character, it will be B’s turn to read,

– δ((qA, qB , B), σ) = (qA, δB(qB , σ), A). If it’s B’s turn to read, we transition B’s state while
keeping A the same. To transition B’s state, we apply B’s transition function. After reading
the character, it will be A’s turn to read.

• S = (SA, SB , A). Initially, A starts in it’s start state, B starts in its start state, and it’s A’s turn
to read a character

• F = {(qA, qB , A)|qA ∈ FA or qB ∈ FB but not both}. We accept if exactly one of the two
machines finished in an accept state. Additionally, it should be A’s turn to read a character at
the end.

Thus, because there is a DFA to recognize XOR-SHUFFLE(A,B), we conclude that XOR-SHUFFLE(A,B)
is regular, which establishes that regular languages are closed under XOR-SHUFFLE.

Approach 2: Appeal to known regular language closure properties. We note that

XOR-SHUFFLE(A,B) = PERFECT-SHUFFLE(A,Bc) ∪ PERFECT-SHUFFLE(Ac, B)

Regular languages are closed under complement and PERFECT-SHUFFLE. Thus, regular languages
are closed under XOR-SHUFFLE.

5. (a) First we prove the forward direction: if L is regular, then L can be recognized by an rNFA. If L
is regular, then there exists a DFA D that recognizes L. We simply note that D is a rNFA that
simply chooses not to have non-determinism. A DFA only has one computation path, so it only
accepts if exactly one computation path accepts.

Next we prove the backward direction: if L can be recognized by an rNFA then L is regular. Let
R = (QR,Σ, δR, §R, FR) be an rNFA that recognizes L. We will design a DFA D = (Q,Σ, δ, S, F)
as follows:

• Q = P(QR) - Every DFA state is a unique combination of rNFA states. The DFA keeps track
of all of the possible states the rNFA could currently be in based on the characters it has read
and choices that were available at each step.

• The alphabet Σ stays the same

• δ(T, σ) = E

(⋃
t∈T

δR(t, σ)

)
. The input to the transition function is a combination of states

T ⊆ QR, as well as a symbol σ ∈ Σ. We loop through every individual state t ∈ T , and apply
the rNFA transition function to t and σ. We collect the union of all of these results into one
list of possible “next states”. Finally, we take the ε closure of this set to see where the rNFA
could go after reading the symbol σ as well as any number of ε characters.

• S = E({SR}). The start state of the DFA is the ε closure of the start state of the rNFA. This
reflects all of the states that the rNFA could possibly reach before it reads any characters.

4

• F = {T ⊆ QR|T contains exactly one accept state of R}. Every combination that contains
one and only one accept state is an accepting combination. This indicates that after reading
the string, the rNFA can reach one and only one accept state.

By construction, D is a DFA that simulates every computation path of R, and accepts a string if
and only R would have accept it. Thus, D recognizes L, so L is regular.

(b) We can use rNFA’s to show that regular languages are closed under ⊕. Suppose A and B are
regular. Then there are DFAs DA, DB to recognize A and B, respectively. To recognize A ⊕ B,
we construct an rNFA R that has a special start state S0, along with ε transitions to the original
start states of DA and DB . This creates exactly two computation paths: one path checks if DA

accepts w, and the other path checks if DB accepts w. The rNFA accepts if exactly one of these
two paths accepts. This means R accepts w if either w ∈ A or w ∈ B, but not both. By definition,
this means R accepts w if and only if w ∈ A⊕B.

5

