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The set of nautral numbers is clearly a subset of the set of integers, which is clearly a subset of the
rational numbers, which is clearly a subset of the real numbers. But all of these sets are infinite. Are they
all the same size? Are abt of then ‘bigger’ than the other? What does such a statement even mean, and
how do we even prove such a statement?

1 Bijections

Definition 1.1. Let S1 and S2 be two sets. A bijection is a mapping f : S1 → S2 that satisfies the
following two properties:

1. Surjective: every element in S2 is mapped to by some element in S1

2. Injective: The mapping is one-to-one; every element in S1 maps to exactly one element of S2

Example 1.1. Let N = {0, 1, 2, . . . } be the natural numbers, and let S = {0, 1, 4, 9, . . . } be the square
integers. Then there exists a bijection between N and S. We simly have f(n)→ ns, i.e.

• 0→ 0

• 1→ 1

• 2→ 4

• 3→ 9

• 4→ 16

• . . .

Every square integer is mapped to by its square root, and every natural number maps to exactly one square.

2 Countably Infinite Sets

Axiom. The natural numbers N are countable

Definition 2.1. A set S is countably infinite if there exists a bijection f : N→ S

Remark. If it is obvious that a set is infinite then we will usually just say the set is countable.

Example 2.1. The set of square numbers S = {0, 1, 4, 9, . . . } is countably infinite

Example 2.2. The set of integers Z = {. . . ,−3,−2,−10, 1, 2, 3, . . . } is countable. To show this we give the
following bijection:

• 0→ 0

• 1→ 1, 2→ −1
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• 3→ 2, 4→ −2

• 5→ 3, 6→ −3

• . . .

Theorem 2.1. The set of rational numbers Q = {a/b| a, b ∈ N, b 6= 0} is countable.

Proof. A naive approach would be to list all of the rationals with 1 on the denominator, then list all of the
rationals with 2 on the denominator, etc. But this will use up all of our resources on the rationals with 1 on
top. Instead, we use the trick of going diagonally: for every integer n = 1, 2, 3, . . . we list all rationals whose
numerator and denominator add up to k.

• 0→ 0

• n = 2

– 1→ 1/1

• n = 3

– 2→ 1/2

– 3→ 2/1

• n = 4

– 4→ 3/1

– We skip over 2/2 because we already got 1

– 5→ 1/3

• n = 5

– 6→ 4/1

– 7→ 3/2

– 8→ 2/3

– 9→ 1/4

• . . .

Figure 1 illustrates this technique.

Proposition 2.1. The set of Turing machines on the alphabet Σ = {0, 1} is countable.

Proof. We list out the set of TMs as follows:

1. List out all TMs with 1 state

2. List out all TMs with 2 states

3. List out all TMs with 3 states

4. List out all TMs with 4 states

5. . . .
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2.1 Exercises

1. Prove that the set N2 = {(x, y)|x, y ∈ N} is countable.

2. Prove that the set of all finite binary strings is countable

2. Prove that the set of all java programs is countable.

3 Uncountable Sets

Intuitively, it seems unlikely that the real numbers would be countable. If you were to try to list out all
of the real numbers, where would you start? How would you know which number to list ‘next’? On the
other hand, how do we rigorously prove that no such bijection exists? The solution involves using a brilliant
technique developed by the mathematician Georg Kantor.

Theorem 3.1 (Cantor). The set of real numbers R is uncountable.

Proof. To prove this we use Cantor’s technique of diagonalization. The idea is as follows:

1. AFSOC there is a bijection f : N→ R

2. We construct a real number r∗ that disagrees with every other real number at one digit

3. Either r∗ disagree. Either way we have reached a contradiction.

Formally, we prove it as follows:

1. AFSOC there is a bijection f : N→ R

0→ r0, 1→ r1, 2→ r2, 3→ r3, . . .

2. We construct a real number r∗ as follows: For each ri, we make it so that the i-th digit of r∗ is different
from the i-th digit of ri. This way, r∗ must be distinct from each ri

3. r∗ is a valid real number, so it must be part of the bijection. This means r∗ = ri for some i ∈ N. But
we constructed r∗ such that it does not match each ri. Thus r∗ disagrees with itself at some digit,
which is a contradiction.

Figure 2 illustrates Cantor’s diagonalization technique.

Lemma 3.1. The set of infinite binary strings is uncountable.

Proof. We once again make use of Cantor’s diagonalization argument.

1. AFSOC there exists a bijection between N and the set of infinite binary strings.

0→ s0, 1→ s1, 2→ s2, . . .

2. We construct a new string s∗ as follows: for each si, we make it so that s∗ and si disagree at the i-th
bit

3. s∗ is an infinite binary string and it must be part of our bijection. This means s∗ = si for some i ∈ N.
But we constructed ∗ uch that it does not match any si. Thus s∗ disagrees with itself at some bit,
which is a contradiction.
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Lemma 3.2. The set of formal languages (on any alphabet) is uncountable.

Proof. Let w1, w2, w3, · · · ∈ Σ∗ be the set of all possible strings. We can represent a language using an
infinite binary string: we set bit i to be 1 if wi ∈ L and 0 otherwise.

The set of infinite binary strings is uncountable, therefore the set of formal langauges must also be
uncountable.

Corollary 3.1. There exist languages that are not Turing-recognizable.

Proof. The set of Turing machines is countable, but the set of formal languages is uncountable. Thus there
cannot possibly be a Turing machine to recognize every language.
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Figure 1: Counting the rational numbers
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Figure 2: Cantor’s diagonalization techinque: We first assume we can list out the reals in order, and
then construct a new real number r∗. For each real number ri we make sure r∗ and ri disagree at the i-th
digit.
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Figure 3: Infinite binary strings are uncountable: Here we illustrate how to apply Cantor’s diagonal-
ization technique to the set of infinite binary strings.
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