
Theory of Computation Notes: Mapping Reductions

Arjun Chandrasekhar

Previously we have seen informal notions of reduciblility. We showed instances in which a language A
was ‘reducible’ to language B: a machine that decided language B could be used to construct a machine
that decided language A.

By extension, if a solution to B would yield a solution to A, but we know that A has no solution, we
conclude that there cannot be a solution to B.

Here we will formalize that notion, with the concept of mapping reduciblility.

1 Computable Functions

So far in this course we have worked with machines that take an input string w and either accept or reject
w. But we can also construct machines such that take an input, and produce an output string. We will
make this notion precise here.

Definition 1.1. Let f : Σ∗ → Σ∗ be a function from strings to strings. We say f is a computable function
if there is a Turing machine M such that for all input strings w, M will always halt, and at the end of the
computation M will leave f(w) (and nothing else) on the tape.

Remark. As always, you can think of a computable as a java function or program that takes an input and
produces an output. We are simply expanding our definition of computability to include all java functions,
rather than just boolean functions.

Example 1.1. The function f(n) = 2n is a computable function. We start with an integer n on the tape.
We can program a TM to perform binary multiplication (or multiplication in whatever base we are using).
At the end of the computation we leave 2n on the tape.

2 Mapping Reducibility

Definition 2.1. Let A,B ⊆ Σ∗ be formal languages. Suppose there is a function f : Σ∗ → Σ∗ such that
w ∈ A ⇔ f(w) ∈ B. We say A is mapping reducible to B. We denote this as A ≤M B. We call the
function f a reduction from A to B.

Remark. We sometimes use the following two phrases to characterize a mapping reduction:

1. “YES maps to YES”

2. “NO maps to NO”

Figure 1 illustrates this concept.

Example 2.1. Consider the following two langauges:

A = {n ∈ N|n is even}
B = {n ∈ N|n is odd}

1



Figure 1: Illustration of a mapping reduction. Yes maps to Yes - if we start with an element in A, we
end up with an element in B. Similarly, No maps to No.

We will show that A ≤M B. Consider the function f(n) = n + 1. Clearly this function is computable.
Furthermore, we note that for any integer n, if n is even then n + 1 is odd and vice-versa. Thus n ∈ A ⇔
f(w) ∈ B. Thus, A ≤M B, and f is a reduction from A to B.

Theorem 2.1. ATM ≤M HALT

Proof. Recall that

ATM = {〈M,w〉|w ∈ L(M)}
HALT = {〈M ′, w′〉|M ′ halts on w′}

We need to define a function f : 〈M,w〉 → 〈M ′, w′〉 such that

〈M,w〉 ∈ ATM ⇔ f(〈M,w〉) ∈ HALT

2



We will define f : 〈M,w〉 → 〈M ′, w′〉 as follows:

1. M ′ is a TM defined as follows:

(a) M ′ takes input s

(b) M ′ simulates M on s

(c) If M accepts then M ′ accepts
If M rejects or loops then M ′ goes into a loop

2. w′ = w

Note that M ′ is the same as M , but instead of rejecting it loops.

1. “YES maps to YES”: If M accepts w then so will M ′

2. “NO maps to NO”If M does not accept w then M ′ will loop. If M loops on w then so will M ′. If M
halts and rejects w then M ′ will still go into a loop after M rejects

Thus
〈M,w〉 ∈ ATM ⇔M accepts w ⇔M ′ halts on w′ ⇔ 〈M ′, w′〉 = f(〈M,w〉) ∈ HALT

Remark. This example illustrates the difference between Turing reductions and mapping reductions. We
saw earlier that ATM ≤T HALT. In that example, we used a decider MH for HALT to check if M would
loop on w. If so, we automatically rejected 〈M,w〉; otherwise we ran M on w to see what happened. In that
example, we ran MH on 〈M,w〉, and then did further processing. If we had wanted to, we could have run
MH as many times as we wanted.

A mapping reduction is more restrictive. To show that ATM ≤M HALT, we still get to assume we have
a decider MH for HALT. However, we only get to run MH once, and it has the be the very last step. Once
we run MH , we have to give whatever output MH gives.

Theorem 2.2. ATM ≤M EQTM. Recall that

ATM = {〈M,w〉|w ∈ L(M)}
EQTM = {〈M1,M2〉|L(M1) = L(M2)}

Proof. We need a function f : 〈M,w〉 → 〈M1,M2〉 such that

〈M,w〉 ∈ ATM ⇔ 〈M1,M2〉 ∈ EQTM

We define f : 〈M,w〉 → 〈M1,M2〉 as follows:

1. M1 is a machine that accepts everything

2. M2 is a TM that does the following:

(a) M2 takes s as input

(b) Ignore s and run M on w

1. “YES maps to YES”: If M accepts w then both M1 and M2 accept everything, so they are equal

2. “NO maps to NO”: If M doesn’t accept w then M1 accepts everything but M2 accepts nothing, so
they are not equal

3



Thus
〈M,w〉 ∈ ATM ⇔ w ∈ L(M)⇔ L(M1) = L(M2)⇔ 〈M1,M2〉 = f(〈M,w〉) ∈ EQTM

Theorem 2.3. ATM ≤M EQTM

Proof. We need a function f : 〈M,w〉 → 〈M1,M2〉 such that

〈M,w〉 ∈ ATM ⇔ 〈M1,M2〉 ∈ EQTM

We define f : 〈M,w〉 → 〈M1,M2〉 as follows:

1. M1 is a machine that rejects everything

2. M2 is a TM that does the following:

(a) M2 takes s as input

(b) Ignore s and run M on w

1. “YES maps to YES”: If M accepts w then M1 accepts nothing while M2 accepts everything, so they
are unequal

2. “NO maps to NO”: If M doesn’t accept w then M1 and M2 both accept nothing, so they are not
unequal

Thus
〈M,w〉 ∈ ATM ⇔ w ∈ L(M)⇔ L(M1) 6= L(M2)⇔ 〈M1,M2〉 = f(〈M,w〉) ∈ EQTM

3 Mapping Reductions and Recognizability

We have seen that Turing reductions are a powerful tool to prove that certain languages are undecidable.
We will show that mapping reductions can accomplish this too, while also allowing us to show that some
problems are not even recognizable.

Theorem 3.1. The following two statements are true:

• If A ≤M B and B is decidable then A is decidable.

• If A ≤M B and B is recognizable then A is recognizable.

Proof.

• If B is decidable then some machine MB decides B. If A ≤M B then there is a computable function
f such that w ∈ A⇔ f(w) ∈ B. We construct a machine MA that decides A as follows:

1. MA takes w as input

2. Compute f(w)

3. Run MB on f(w)

4. If MB accepts f(w), accept
If MB rejects f(w), reject

4



Note that because f is computable and MB is a decider, MA is guaranteed to halt. Furthermore, by
the definition of mapping reducibility, we have that

MA accepts w ⇔MB acceptsf(w)⇔ f(w) ∈ B ⇔ w ∈ A

• If B is recognizable then some machine MB recognizes B. If A ≤M B then there is a computable
function f such that w ∈ A⇔ f(w) ∈ B. We construct a machine MA that recognizes A as follows:

1. MA takes w as input

2. Compute f(w)

3. Run MB on f(w)

4. If MB accepts f(w), accept
If MB does not accept f(w), do not accept

By the definition of mapping reducibility, we have that

MA accepts w ⇔MB acceptsf(w)⇔ f(w) ∈ B ⇔ w ∈ A

Note that if w /∈ A then f(w) /∈ B so MA might loop in this scenario when it passes control to MB ,
but that’s ok.

Theorem 3.2. The following two statements are true:

• If A ≤M B and A is undecidable then B is undecidable

• If A ≤M B and A is unrecognizble then B is unrecognizable

5



Proof.

• AFSOC B is decidable. Then by theorem 3.1 A is also decidable. But we know that A is undecidable,
so this is a contradiction. We conclude that B must be undecidable.

• AFSOC B is recognizable. Then by theorem 3.1 A is also recognizable. But we know that A is
unrecognizable, so this is a contradiction. We conclude that B must be unrecognizable.

Theorem 3.3. Suppose A ≤M B. Then A ≤M B

Proof. If A ≤M B then there is a computable function f such that

w ∈ A⇔ f(w) ∈ B

This also means that
w /∈ A⇔ f(w) /∈ B

This is just another way of saying that

w ∈ A⇔ f(w) ∈ B

Thus f also is a reduction from A to B.

Theorem 3.4. EQTM is neither recognizable nor co-recognizable.

Proof. To show that EQTM is not recognizable, we first note that ATM ≤M EQTM - this is a consequence
of combining theorem 2.3 and theorem 3.3. We then note that ATM is not Turing-recognizable. Thus,
theorem 3.2 tells us that EQTM is not recognizable.

To show that EQTM is not co-recognizable, we will show that EQTM is not recognizable. To do this, we
first note that ATM ≤M EQTM - this is a consequence of combining theorem 2.2 and theorem 3.3. We then
note that ATM is not Turing-recognizable. Thus, theorem 3.2 tells us that EQTM is not recognizable. By
definition, this means EQTM is not co-recognizable.

6


