
Theory of Computation: Non-regular Languages

Arjun Chandrasekhar

1 The pigeonhole principle

Theorem 1.1. The pigeonhole principle is a (seemingly obvious) principle which states that if there are
m pigeons, and n > m holes, then there must be a hole with more than one pigeon. More formally, if a
function’s co-domain is smaller than it’s domain, the function cannot be injective (one-to-one).

Example 1.1. If I have three gloves, at least two of them must fit the same hand.

Example 1.2. If there is a room with 367 people, there must be a shared birthday.

Proposition 1.1. Let G be a directed graph in which every node has positive out-degree. G must have a
directed cycle.

Proof. We will construct a random walk u1, u2, For the first node, we pick a random node in the graph.
At every step, if we are at a node u, we will walk to a random neighbor of u. Because every node has
positive out-degree, there will always be at least one available node. Thus, we can extend our random walk
ad infinitum.

Suppose G has n nodes. Consider nodes u1, u2, . . . , un+1, i.e. the first n+ 1 nodes in the random walk.
There are more nodes in our random walk than there are nodes in the graph. By the pigeonhole principle,
our random walk has touched at least one node more than once, thus creating a cycle.

2 The pumping lemma

A DFA can be thought of a directed graph. Because a DFA must have every transition defined for every
state/symbol combination, every node in the DFA state graph must have positive out-degree. When the
DFA reads a string, it essentially performs a random walk between its states. If we read a string whose
length is longer than the number of states in the DFA, proposition 1.1 tells us that there will be a directed
cycle.

If the DFA accepts a ‘sufficiently long’ string w, it will read some prefix of w to get to some state s,
read the middle part of w to loop from s back to itself, and then read some suffix of w to go from s to an
accept state. However, the DFA could have just as easily looped from s back to itself twice befroe going
to the accept state. It could have also looped three times, four times, or even zero times! Thus, there are
an infinite number of strings that the DFA can accept by simply ‘pumping’ as many times as desired. We
formalize this below.

Lemma 2.1 (Regular language pumping lemma). If A is a regular langugae, there is a number p (the
pumping length) where if s is a string in A of length at least p, then s may be divided into three pieces,
s = xyz, satisfying the following three conditions:

1. |xy| ≤ p

2. |y| > 0

3. for each i ≥ 0, xyiz ∈ A

1

Recall the notation where |s| represents the length of string s, yi means that i copies of y are concatenated
together, and y0 = ε.

When we divide s into xyz, condition 1 states that xy is contained within the first p characters. Condition
2 states that while either x or y (or both) may be ε, but y must have positive length (otherwise the lemma
would be trivially true). Condition 3 states that we can add (or remove) any number of copies of y, and the
resulting string will still be in the language.

Proof. Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and let p be the number of states of M , i.e. |Q|.
Let s = s1s2 . . . sn ∈ A be a string of length n ≥ p. Let r1, r2, . . . , rn+1 be the sequence of states that M

enters while processing s, so ri+1 = δ(ri, si) for 1 ≤ i ≤ n. This sequence has length n+ 1 ≥ p+ 1. Among
the first p+ 1 elements in the sequence, two must be the same state by the pigeonhole principle. We call the
first of these rj and the second rl, with l ≤ p+ 1. Now let x = s1 . . . sj−1, y = sj . . . sl−1, and z = sl . . . sn.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes M from rj to rn+1, which is an accept
state. M must accept xyiz for all i ≥ 0. We now that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p. Thus we
have satisfied all conditions of the pumping lemma.

Corollary 2.1. Suppose A is a language that does not have a valid pumping length. Then A is not regular.

Remark. Every finite language is regular. The pumping lemma claims that if a language is regular, then
every sufficiently long string can be pumped infinitely many times. How do we reconcile this apparent
contradiction?

Let L be a finite language, and let N be the length of the longest string in L. We set the pumping length
to be p = L + 1. The pumping lemma states that every string whose length is at least p can be split into
xyz and pumped. We are not on the hook for any strings whose length is shorter than p. Thus, we don’t
have to worry abouy pumping any of the strings in L. Technically, every string in L whose length is at least
p can be pumped - this statement is vacuously true.

3 Pumping lemma arguments

The pumping lemma gives us a tool to prove that certain languages are not regular. If we show that every
possible pumping length p fails for language A, we conclude that A is not actually regular because it can’t
be recognized by any DFA.

Pumping lemma arguments typically follow the following formula:

1. Assume for sake contradiction that A is a regular language. Then it must have a pumping length p

2. Pick some string w such that w ∈ A and |w| ≥ p

3. Show that w is not ‘pumpable’; That is, show that no matter how we split up w = xyz, there exists
some i such that xyiz /∈ A. Note that we may assume w is split up such that |xy| ≤ p and |y| > 0.

4. Because A contains a string that is not pumpable, this contradicts the assumption that p is a valid
pumping length for A. Thus, we have arrived at a contradiction and reject the claim that A is regular.

Example 3.1. Let B be the language {0n1n|n ≥ 0}. We use the pumping lemma to prove that B is not
regular.

Assume for sake of contradiction that B is regular. Let p be the pumping length given by the pumping
lemma. Choose s to be the string 0p1p. Because s is a member of B and s has length ≥ p, the pumping
lemma guarantees that s can be split into three pieces, s = xyz, such that:

1. |xy| ≤ p

2. |y| > 0

3. xyiz ∈ B for all i

2

Because |xy| ≤ p, the xy part of s must be contained in 0p. The second condition ensures that y contains
a positive number of 0’s. When we ‘pump up’, i.e. add more copies of y, we will have more 0’s than 1’s. If
we ‘pump down’, we will have fewer 0’s than 1’s. Either way, after pumping we will produce a string that is
not in B. Thus, 0p1p is not pumpable, a contradiction of the pumping lemma. We conclude that B is not
regular.

4 The pumping lemma as a two player game

Sometimes it can be confusing to remember the order of the quantifiers. In particular, it can be difficult to
remember which things can and cannot be assumed about the language and the string. One helpful way to
think about the pumping lemma is to think of it as a two player game.

1. Player 1 declares that L is a regular language, and declares a pumping length p

2. Player 2 picks a string s such that s ∈ L and |s| ≥ p. If player 2 cannot do this, player 1 wins.

3. Player 1 splits up s into three parts xyz. Player 1 must ensure that |xy| ≤ p and |y| > p.

4. Player 2 tries to pump y up or down in order to produce a string that is not in L

If L is regular, the pumping lemma tells us there exists a valid pumping length p; Player 1 can declare
this pumping length p, and player 1 will have a way to win no matter what string player 2 picks.

If L is not regular, no matter what pumping length player 1 picks, there will always be a valid string that
player 2 can pick in order to guarantee a win. In particular, there is some string s that player 1 can pick,
and no matter how player 1 splits s into three parts, player 2 can pump up or down to generate a string that
is not in the language.

Example 4.1. Let’s prove that 0n1n is not regular, using the two-player game interpretation.

1. Player 1 declares L is regular, and picks some pumping length p.

2. Depending on what value of p player 1 picks, player 2 picks s = 0p1p.

3. Player 1 splits s into s = xyz. Note that player 1 is obligated to make sure that xy is contained within
0p, and y must be non-empty.

4. Player 2 pumps y (either up or down) and produces a string that is not in the language.

Player 2 is guaranteed to win for every possible choice of p. Thus, L is not regular.

4.1 Exercises

1. Let Σ = {0, 1}. Prove that the language L = {wwR | wR is the reverse of w} is not regular.

2. Let Σ = {0, 1,+,=} and let ADD = {x + y = z | x, y, z are binary numbers}. Prove that ADD is not
regular.

3

