
Theory of Computation Notes Notes: Recursively Enumerable

Languages

Arjun Chandrasekhar

1 Enumerators and RE Languages

Definition 1.1. A enumerator is a Turing machine with an attached printer. At any point in the compu-
tation, the machine can send a string to the printer to have it printed.

Definition 1.2. Let L be a language and let E be an enumerator. We say E enumerates L if E prints
out all of the elements of L. If w ∈ L, and if we give the enumerator infinite time, then E will eventually
print out w. And if w /∈ L it will never get printed out.

If L is enumeratd by some language, we say L is recursively enumerable (RE).

Figure 1: Schematic illustration of an enumerator.

1

2 Equivalence of RE and Recognizable Languages

Theorem 2.1. A language L is Turing-recognizable if and only if L is recursively enumerable.

We will prove this theorem in two parts.

Lemma 2.1. (⇒) If L is recursively enumerable, then L is Turing-recognizable.

Proof. Suppose some machine E enumerates L. We design a machine M to recognize L. On input w, M
does the following:

1. Run E to enumerate L

2. If at any point E wants to print out w, M will immediately accept.

3. Otherwise M will run forever

If w ∈ L then by definition, E must print it out at some point, so M will eventually accept it. If w /∈ L
then E will never print out w, so M will run forever without accepting. Note that M does not decide L
because it runs forever if w /∈ L.

Lemma 2.2. (⇐) If L is recognizable, then L is recursively enumerable.

Proof. Suppose some machine M recognizes L. We will design a machine E to enumerate L.
A naive solution would be as follows:

1. Go through each w1, w2, · · · ∈ Σ∗

(a) For each wi, run M on w

(b) If M accepts w, print it out

(c) Move on to the next string

The problem with this method is that M is merely a recognizer, not a decider, for L. So if we encounter
a string wi /∈ L, it is possible that M will loop on wi and we never get to test out the rest of the strings.

To get around this problem, we introduce a technique called dovetailing. First, let w1, w2, · · · ∈ Σ∗ be
all the strings on the alphabet. Then, let S(i, j) represent step i of the computation when we run M on
string wj . Then we dovetail M as follows:

1. Run S(1, 1)

2. Run S(1, 2), S(2, 1)

3. Run S(1, 3), S(2, 2), S(3, 1)

4. Run S(1, 4), S(2, 3), S(3, 2), S(4, 1)

5. . . .

Essentially, we keep a queue of strings that we have started working on. For each string wi in the queue, we
keep track of how far M has progressed on wi. At each time point, we add the “next” string to the queue;
for every string in the queue, we run M for “one more step”. We keep doing this as long as we want. In this
way, M gets to process every possible string, and it will eventually reach every point in its computation on
every string. Figure 2 illustrates this process.

2

Figure 2: Illustration of dovetailing technique

In order to enumerate L, we design an enumerator E as follows:

1. Run M in parallel on every string w1, w2, . . .Σ
∗

2. Whenever M accepts any string wi, we print it out

Dovetailing ensures that M will process every string eventually. Because M recognizes L, it will only accept
wi if wi ∈ L. Thus, E will print out all strings in L.

3

