Theory of Computation Notes Notes: Recursively Enumerable
Languages

Arjun Chandrasekhar

1 Enumerators and RE Languages

Definition 1.1. A enumerator is a Turing machine with an attached printer. At any point in the compu-
tation, the machine can send a string to the printer to have it printed.

Definition 1.2. Let L be a language and let F be an enumerator. We say £ enumerates L if FE prints
out all of the elements of L. If w € L, and if we give the enumerator infinite time, then E will eventually

print out w. And if w ¢ L it will never get printed out.
If L is enumeratd by some language, we say L is recursively enumerable (RE).

ag

baba
abba

> rinter
control P

—

0[{1]{0]|0|u|... worktape

Figure 1: Schematic illustration of an enumerator.

2 Equivalence of RE and Recognizable Languages

Theorem 2.1. A language L is Turing-recognizable if and only if L is recursively enumerable.
We will prove this theorem in two parts.

Lemma 2.1. (=) If L is recursively enumerable, then L is Turing-recognizable.

Proof. Suppose some machine F enumerates L. We design a machine M to recognize L. On input w, M
does the following:

1. Run E to enumerate L
2. If at any point E wants to print out w, M will immediately accept.
3. Otherwise M will run forever

If w € L then by definition, E must print it out at some point, so M will eventually accept it. If w ¢ L
then E will never print out w, so M will run forever without accepting. Note that M does not decide L
because it runs forever if w ¢ L. O

Lemma 2.2. (<) If L is recognizable, then L is recursively enumerable.

Proof. Suppose some machine M recognizes L. We will design a machine F to enumerate L.
A naive solution would be as follows:

1. Go through each wy,ws, - € ¥*

(a) For each w;, run M on w
(b) If M accepts w, print it out

(¢) Move on to the next string

The problem with this method is that M is merely a recognizer, not a decider, for L. So if we encounter
a string w; ¢ L, it is possible that M will loop on w; and we never get to test out the rest of the strings.

To get around this problem, we introduce a technique called dovetailing. First, let wy,wo,--- € ¥* be
all the strings on the alphabet. Then, let S(4,5) represent step i of the computation when we run M on
string w;. Then we dovetail M as follows:

1. Run §(1,1)

2. Run 5(1,2), 5(2,1)

3. Run 5(1,3),5(2,2), 5(3,1)

4. Run S(1,4),5(2,3),5(3,2),5(4,1)
5. .

Essentially, we keep a queue of strings that we have started working on. For each string w; in the queue, we
keep track of how far M has progressed on w;. At each time point, we add the “next” string to the queue;
for every string in the queue, we run M for “one more step”. We keep doing this as long as we want. In this
way, M gets to process every possible string, and it will eventually reach every point in its computation on
every string. Figure 2 illustrates this process.

nge‘l'ai |ihg

How to run a courtable set of computatiors at oice.

Steps
\ | 2 3 4 5 ¢
M)A 2 @ A Eg.
g <MY M accepts
i 77 Z]
- M (10) Accepts |
M (1) o K

Figure 2: Illustration of dovetailing technique

In order to enumerate L, we design an enumerator E as follows:
1. Run M in parallel on every string wy, wo, ... X"

2. Whenever M accepts any string w;, we print it out

Dovetailing ensures that M will process every string eventually. Because M recognizes L, it will only accept
w; if w; € L. Thus, F will print out all strings in L. OJ

