
Theory of Computation Notes: Regular Expressions

Arjun Chandrasekhar

1 Regular expressions

Definition 1.1. A regular expression is an an expression describing a language. The regular expression
describes what strings are part of a language by describing rules for sequentially constructing strings in the
language.

Formally, let Σ be an alphabet. We say R is a regular expression if R is

1. a, for some a ∈ Σ

2. ε

3. ∅

4. (R1 ∪R2) where R1 and R2 are regular expressions

5. (R1 ◦R2), where R1 and R2 are regular expressions, or

6. (R∗1) where R1 is a regular exrpression

In items 1 and 2 the regular expressions a and ε represent the languages {a} and {ε}, respectively. In item
3, thre regular expression ∅ represents the empty language. In items 4, 5, and 6, the expressions represent
the languages obtained by taking the union or concatenation of the languages R1 and R2, or the Kleene star
of the language R1, respectively.

Some remarks:

• Do not confuse ε and ∅. ε represents a language with the single string ε. ∅ represents a language with
no strings.

• This definition may seem circular, because we define one regular expression in terms of other ones.
However, we are defining a regular expression in terms of two smaller ones. This is a valid inductive
definition.

• Parentheses are optional. If they are omitted, the order of operations (in descending order of prece-
dence): star, concatenation, then union

• Concatenation is often omitted. For example, 1 ◦ 1 ◦ 1 will often be written as 111

• For convenience, we let R+ = RR∗. Note that R∗ = R+ ∪ ε

• We let Rk be shorthand for the concatenation of k copies of R with each other, i.e. R4 = RRRR

• We have already seen one regular expression: Σ∗, i.e. the language containing all strings that can be
formed with the alphabet Σ

• We write L(R) to denote the language of R, or the set of strings generated by R

Example 1.1. In each of the following instances Σ = {0, 1}

1



1. 0∗10∗ = {w | w contains a single 1}

2. (ΣΣ)∗ = {w | w is a string of even length}

3. (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

Example 1.2. Some regular expression identities:

1. R ∪ ∅ = R - adding the empty language to R will not change it

2. R ◦ ε = R - concatenating the empty string will not change R

3. R ◦ ∅ = ∅ - to concatenate two regular expressions, we need a string from the first regex and a string
from the second one. In this case, it is impossible to produce a string from ∅, so it is impossible to
concatenate R with ∅. Thus, the regular expression generates no strings - in other words, ∅

2 Equivalence of regular expressions and finite automata

Theorem 2.1 (Kleene’s Theorem). A language is regular if and only if some regular expression describes
it.

Lemma 2.1. If a language is described by a regular expression, then it is regular.

Proof. Given any regular expression R, we show how to convert it into an NFA N . We consider the six cases
in the formal definition of regular expressions. We will prove it by induction.

Base Case

1. Suppose R = a for some a ∈ Σ. Then L(R) = {a} and the following NFA reognizes L(R)

Figure 1: An NFA for a ∈ Σ. If the machine tries to read any string other than ‘a ’, the computation will
either finish in q0 or die.

2. Suppose R = {ε} then L(R) = {ε}, and the following NFA recognizes L(R)

Figure 2: An NFA for ε. The NFA will halt and accept on the empty string by the computation will die
if it tries to read any characters.

2



3. Suppose R = ∅. Then L(R) = ∅, and the following NFA recognizes L(R)

Figure 3: An NFA for ∅. The machine will reject the empty string, and the computation will die if it tries
to read any characters.

Inductive case: Assume that every regular expression of length ≤ n can be converted to an NFA. Let
R be a regular expression with length n+ 1

1. Suppose R = R1 ∪R2. Then R1 and R2 must have lengths ≤ n, so by our inductive hypothesis there
exist NFAs N1 and N2 which recognize R1 and R2, respectively. We have previously shown that it is
possible to construct an NFA N such that L(N) = L(N1) ∪ L(N2) = L(R1) ∪ L(R2) = R.

2. Suppose R = R1 ◦ R2. Then R1 and R2 must have lengths ≤ n, so by our inductive hypothesis there
exist NFAs N1 and N2 which recognize R1 and R2, respectively. We have previously shown that it is
possible to construct an NFA N such that L(N) = L(N1) ◦ L(N2) = L(R1) ◦ L(R2) = R.

3. Suppose R = R∗1. Then R1 must have length ≤ n, so by our inductive hypothesis there exists an NFA
N1 which recognizes R1. We have previously shown that it is possible to construct an NFA N such
that L(N) = L(N1)∗ = L(R1)∗ = R.

3



Example 2.1. Figure 4 shows how ton create an NFA for the regex (ab∪ b)∗. Note that ab has the implied
concatenation a ◦ b.

Figure 4: Converting a regex to an NFA. First we construct NFAs for the languages {a} and {b}, and
then combine them via concatenation, union, and Kleene star.

Lemma 2.2. If a language is regular, then it is described by a regular expression.

Proof idea: We need to show that if a language A is regular, a regular expression describes it. Because
A is regular, it is accepted by a DFA D. We describe a procedure for converting D into an equivalent regular
expression.

We break this procedure into two parts, using a new type of finite automaton called a generalized
nondeterministic finite automaton (GNFA). First we show how to convert a DFA into a GNFA, and
then a GNFA into a regex.

GNFAs are simply NFAs, except the transitions can contain a full regular expression (rather than a single
character). Rather than reading a single character at a time, a GNFA can read an entire chunk of input.
I may take a transition if it can read a chunk of the input that is in the language of the regex for that
transition.

For convenience, we require that GNFAs always be in a special form that meet the following requirements:

4



• The start state qs has transition arrows going to every other state, but no arrows coming in from any
other state.

• There is only a single accept state, qF , and it has arrows coming in from every other state but no
arrows going to any other state. Furthermore, the accept state is not the same as the start state.

• Except for the start and accept states, one arrow goes from every state to every other state, and also
from each state to itself.

Figure 5 shows an example of a GNFA.

Figure 5: Example GNFA.

We can easily convert at DFA into the GNFA. We add a new start state with an ε arrow to the old start
state, and a new accept state with ε arrows from the old accept states. If there are multiple arrows going
between the same two states in the same direction, we replace them with one arrow whose label is the union
of all the the previous labels. We add an arrow labelled ∅ between states with no arrows.

Proof. Now we show how to convert a DFA to a regular expression. First, we convert the DFA to a GNFA.
We then proceed to iteratively ‘rip ’away one state at a time, until we have only two states left, at which
point it is trivial to conver the GNFA to a regular expression. We will formalize this using induction. Let G
be a GNFA. Because G is in the special form, it must have at least 2 states, qs and qF

Base case: Suppose G has two states. There is a single arrow going from qs to qF . The label of this
arrow, R, is the equivalent regular expression.

5



Inductive case: Assume every GNFA with ≤ k states can be converted to a regular expression. We
show how to convert a GNFA G with k + 1 states to a regular expression. We will select a state qrip, ‘rip
’it out of the machine, and repair the machine so that it still recognizes the same language. Any state other
than the start or accept state will work; because k > 2 such a state must exist.

After removing qrip we repair the machine by altering the regular expressions that label each of the
remaining arrows. The new labels compensate for the absence of qrip by adding back the lost computations.
The new label going from state qi to qj is a regular expression that describes all strings that would have
taken the machine from qi to qj , either directly, or via qrip.

In the old machine, suppose

• qi → qrip has label R1

• qrip → qrip has label R2

• qrip → qj has label R3

• qi → qj has label R4

There are two ways to get from qi to qj :

• Go from qi → qrip using R1; loop from qrip back to itself any number of times R2; and go from qrip → qj
using R3. The regular expression for this is R1 ◦R∗2 ◦R3

• Go directly from qi → qj using R4

To reflect this, after ripping away qrip, we update the transition qi → qj to have the label (R1◦R∗2◦R3)∪R4.
Figure 6 illustrates the process of ripping away a state.

Figure 6: Ripping away a state.

Upon ripping away qrip, we are left with a GNFA G′ that accepts the same strings as G. Moreover, G′

has k states. By our inductive hypothesis, G′ can be converted to a regex R. Because R is a regex that is
equivalent to G′, it must be equivalent to G.

For an even more formal proof that utilizes the formal definition of a GNFA, see lemma 1.60 in Sipser.

Example 2.2. Figure 7 shows an example of converting a DFA to a regular expression. To avoid cluttering
the figure, all ∅ arrows are omitted.

6



Figure 7: Converting a DFA to a regular expression. We start with the DFA, and convert it to a
GNFA in the special form. We iteratively rip away states until we only have two states left; the remaining
regex is the regex corresponding to the original DFA. In the starting GNFA, the “0” transition from 2 to 1
is an ∅ transition

7


