
Theory of Computation Notes: Regular Languages and Finite

Automata

Arjun Chandrasekhar

1 Alphabets, strings, and formal languages

Definition 1.1. An alphabet is a collection of symbols, e.g.

• {a, b}

• {0, 1}

• {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Definition 1.2. A string is a sequence of symbols from an alphabet, e.g.

• abbabababa

• 01010101010101

• 39074932749327

Let ε denote the empty string, i.e. the string with no symbols.

If Σ is an alphabet, we denote Σ∗ to be the set of all possible strings that can be created from that
alphabet. For example, if Σ = {a, b} then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . . }

Definition 1.3. Let Σ be an alphabet. A formal language is a collection of strings L ⊆ Σ∗, e.g.

• L = {w | w starts with ‘a’ and ends with ‘b’} ⊆ {a, b}∗

• L = {w | w contains 001 as a substring} ⊆ {0, 1}∗

• L = {w | w is a multiple of 27} ⊆ {0, 1, . . . , 9}∗

2 Decision problems

Definition 2.1. A function problem is a problem in which we are given an input and produce an output,
i.e.

• Given an integer x, output x!

• Given a graph G, output its chromatic number k

• Given a graph G and vertices u, v output the length of the shortest path from u to v in G

Definition 2.2. By contrast, a decision problem is a problem in which we are given an input and output
either ACCEPT or REJECT, i.e.

1

• Given two integers x, y, decide if y = x!

• Given a graph G and an integer k, decide if k is the chromatic number of G

• Given a connected graph G, vertices u, v, and an integer k, decide if the shortest path from u to v has
length ≤ k

Essentially, a function problem is given an input and produces an output; a decision problem is given an
input and its hypothesized output, and decides if the output is correct. If we can solve a function problem,
can we solve its corresponding decision problem, and vice versa?

Let’s take a look at the shortest path problem. First, let’s suppose we had a black box to solve the
function problem: given a graph G and vertices u, v, the black box outputs the shortest path length from
u to v. Can we solve the corresponding decision problem: given a graph G, integers u, v, and an integer k,
decide if the shortest path length from u to v is ≤ k?

Yes! We simply feed G, u, v to our black box; the black box outputs a path length k′; we check if k′ ≤ k.
Now let’s check if the other direction holds. Suppose we have a magic black box that takes G, u, v, k as
input and outputs ACCEPT if the shortest path length from u to v is ≤ k, and REJECT otherwise. Can
we determine the shortest path length from u to v?

Again, the answer is yes! Let |V | be the total number of vertices in G. Then clearly the highest possible
path length from u to v is |V |. So we iterate from k = 1, 2, . . . , |V |. For each k, we feed G, u, v, k to our
black box. If it outputs REJECT, we keep going. If it outputs ACCEPT for some k, then the shortest path
length is k − 1 < l ≤ k, meaning the shortest path length is k.

In general, it can be shown that every function problem can be converted to a corresponding decision
problem. We will not show that here, but hopefully the shortest path length example is illustrative.

Why do we actually care about decision problems? The answer is, decision problems are the link between
formal languages and algorithms. Every formal language has an associated decision problem. Let L be a
formal language. The decision problem associated with L is the problem of taking a string w as input,
and outputting ACCEPT if w ∈ L, and REJECT otherwise.

3 Computation

Definition 3.1. An algorithm is, intuitively, a mechanical procedure that takes an input and produces an
output. An algorithm does not require thinking: it simply consists of step-by-step rules to follow mechanically
until arriving at an output.

Definition 3.2. A computer is, intuitively, a machine that can carry out an algorithm. This class will be
dedicated to giving mathematically precise definitions of what a computer is.

When we are working with decision problems, the output must be either ACCEPT or REJECT. When
a machine runs an algorithm, it does one of three things:

1. Output ACCEPT

2. Output REJECT

3. Loop forever

Definition 3.3. We say a machine M decides a language L if for all w

• M outputs ACCEPT if and only if w ∈ L

– If w ∈ L, then M outputs ACCEPT

– If w /∈ L, then M outputs REJECT

• M never loops

2

Figure 1: Example DFA 1

Definition 3.4. We say a machine M recognizes a language L if for all w

• M outputs ACCEPT if and only if w ∈ L

– If w ∈ L then M outputs ACCEPT

– If w /∈ L, then M does not output ACCEPT.

• M is allowed to loop if w /∈ L

4 Deterministic Finite Automata

In this section we will describe a very simple model of a computer. We will see some of the languages this
model of computation can and cannot recognize.

4.1 Formal Description

Definition 4.1. A deterministic finite automata (DFA) is a 5-tuple (Q,Σ, δ, q0, F) where

1. Q is a finite set called the states

2. Σ is a finite set called the alphabet

3. δ : Q× Σ→ Q is the transition function

4. qs ∈ Q is the (unique) start state

5. F ⊆ Q is the set of accept states

Example 4.1. Consider the DFA in Figure 1 The formal description of this DFA is as follows:

3

1. Q = {q0, q1, q2}

2. Σ = {0, 1}

3. We can write the transition function in two ways. First, we can write it explicitly

• δ(q0, 0) = q0

• δ(q0, 1) = q1

• δ(q1, 0) = q2

• δ(q1, 1) = q1

• δ(q2, 0) = q1

• δ(q2, 1) = q1

Alternately we can write it as a table

0 1
q0 q0 q1
q1 q2 q1
q2 q1 q1

4. qs = q1

5. F = {q2}
Some technical notes:

• Q,Σ, F are all sets

• qs is a single state, i.e. a single element of Q

• δ is defined for every combination of a state and a symbol

4.2 Computation on a DFA

A DFA performs computation by reading each symbol of the input one by one, and moving to a new state
upon reading each symbol. Formally, the DFA starts in state q = qs. Let w = w1w2 . . . wn be the input. It
reads each symbol wi in order. For each wi, it uses the transition function and computes δ(q, wi). Based on
this, it transitions to a new state, i.e. q ← δ(q, wi. After reading every symbol, the DFA checks if it is in an
accept state. If q ∈ F , the DFA outputs ACCEPT; otherwise, if q /∈ F , the DFA outputs REJECT.

4.2.1 Accepting Computation

Definition 4.2. Let M = (Q,Σ, δ, q0, F) be a finite automaton and let w = w1w2 . . . wn be a string where
each wi is a member of the alphabet Σ. Then M accepts w if and only if a sequence of states r0r1r2 . . . rn ∈ Q
exists with three conditions:

• r0 = q0

• δ(ri, wi+1) = ri+1 for i = 0, 1, . . . , n− 1

• rn ∈ F
Definition 4.3. M recognizes a language L if and only if L = {w | M accepts w}. Note that a DFA cannot
ever loop forever, since it stops after reading the last symbol. Thus if a DFA recognizes a language, it also
decides it.

4

4.3 Exercises

1. Let Σ = {0, 1}. Design a DFA to recognize L = {w | w starts and ends with the same symbol}

2. Let Σ = {+, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Design a DFA to recognize the language L = {w | w is a valid integer
literal}

3. Let Σ = {a, b}. Design a DFA that recognizes {w = | w ends in bba}

4. Let Σ = {a, b, . . . , z}. Design a DFA to recognize a string with exactly two a’s.

5. Design a DFA to recognize all strings that do not contain exactly two a’s.
6. First, Let wr be the reversal of a string w. Let L be a formal language; define Lr = {wr|w ∈ L}.

Let Σ3 = {0, 1}3 i.e.

0
0
0

 ,
0

0
1

 , . . . ,
1

1
1

.

Let B = {w ∈ Σ∗3|the top row + middle row = the bottom row}

Design a DFA to recognize Br. Remember, the DFA reads a column vector at every step

4.4 Regular Languages

Definition 4.4. A formal language L is a regular language if and only if some DFA D recognizes L. To
show that a language is regular, we must construct a DFA to recognize L.

Definition 4.5. Let L ⊆ Σ∗ be a formal language on an alphabet Σ. The complement of L is

Lc = {w|w ∈ Σ∗, w /∈ L} = Σ∗ \ L

i.e. all strings not in L

Lemma 4.1. Regular languages are closed under complement. That is, if L is regular, then Lc is regular

Proof. If L is regular, then some DFA D recognizes L - that is, if w ∈ L then D accepts w, and if w /∈ L
then D rejects w. To show that Lc is regular, we must design a DFA Dc to recognize Lc. We simply take D
and flip the accept/reject states, so that the DFA rejects all strings in L and accepts all strings not in L.

Formally, Let D = (Q,Σ, δ, q0, F). We create a DFA Dc to recognize Lc. The formal description of
Dc = (Qc,Σc, δc, qc0, F

c) is as follows:

1. Qc = Q i.e. same states

2. Σc = Σ i.e. same alphabet

3. For all q ∈ Q,w ∈ Σc, δc(q, w) = δ(q, w) i.e. same transition function

4. qc0 = q0 i.e. same start state

5. F c = Q \ F i.e. flip the reject states to accept states

By construction, if D rejects w then Dc accepts w because the final state flips from a reject state to an
accept state; similarly if D accepts w then Dc rejects w.

Definition 4.6. Let A and B be regular languages. The perfect shuffle of A and B is

PERFECT-SHUFFLE(A,B) = {w = a1b1a2b2 . . . anbn|a1a2 . . . an ∈ A, b1b2 . . . bn ∈ B}

i.e. the odd characters form a string in A and the even characters form a string in B.

5

Lemma 4.2. Regular languages are closed under the perfect shuffle operation. That is, if A and B are
regular, then PERFECT-SHUFFLE(A,B) is regular

Proof. We know that there exists DFAs DA = (QA,ΣA, δA, qsA , FA) and DB = (QB ,ΣB , δB , qsB , FB). We
will construct a DFAD to check if the even charaters form a string that is accepted byDA and if the even char-
acters form a string that is accepted by DB . We will use the technique of running two DFAs in alternation.

Every state in D is a 3-tuple corresponding to a combination of a state in A, a state in B, and a variable
that keeps track of whose ‘turn ’it is to read a character. Whenever the machine reads a character, it checks
whose turn it is; that machine whose turn it is reads the character and updates its state while the other
machine stays in the same state. The machine then switches value of the turn variable. After reading all
the characters, the machine checks if both of the smaller machines have reached accept states, and if it is
A’s turn to read a character (both machines should read the same number of characters). If so it accepts,
otherwise it rejects.

The formal description of D = (Q,Σ, δ, qs, F) is as follows:

1. Q = QA ×QB × {A,B} Every state in D contains three elements: a state from DA, a state from DB ,
and a ‘turn ’counter with value A or B.

2. Σ = ΣA ∪ ΣB

3.

δ((qA, qB , A), w) = (δA(qA, w), qB , B)

δ((qA, qB , B), w) = (qA, δB(qB , w), A)

If it is A’s turn, the machine computes the transition function for A then switches to B. Otherwise, it
computes the transition function for B and switches to A.

4. qs = (qsA , qsB , A) i.e. the machine starts in the two start states for DA and DB , and at the start it is
A’s turn to read a character.

5. F = FA × FB × {A} i.e. the machine accepts if both DA and DB would be in an accept state, and if
after reading the characters it is A’s turn to read.

4.5 Regular operations

Definition 4.7. Next, let L1 and L2 be formal languages. The three regular operations are the following:

• The union of L1 and L2 is
L1 ∪ L2 = {w|w ∈ L1 ∨ w ∈ L2}

i.e. all strings that are in either one of the two languages.

• The concatenation of L1 and L2 is

L1 ◦ L2 = {w1w2|w1 ∈ L1, w2 ∈ L2}

i.e. a string in L1 followed by a string in L2

• The Kleene star of L1 is
L∗1 = {ε} ∪ {w1w2w3 . . . wn|wi ∈ L1}

i.e. 0 or more consecutive strings, all of which are in L L1

Are regular languages closed under the regular operations?

6

Lemma 4.3. Regular languages are closed under union. That is, if L1 and L2 are regular, then L1 ∪ L2 is
regular.

Proof. We know that L1, L2 are both regular, so there exist DFAs D1 = (Q1,Σ1, δ1, qs1 , F1) and D2 =
(Q2,Σ2, δ2, qs2 , F2) that recognize L1 and L2, respectively. To show that L1 ∪ L2 is regular, we must
show that there is a DFA D that recognizes L1 ∪ L2. To construct D, we will use the technique of
running two DFAs in parallel. Every state in D will be a combination of a state in D1 and a state in
D2. Whenever D reads a character, it simultaneously computes the transition function for D1 and D2. This
produce a state from D1 and a state from D2; D transitions to the state corresponding to that combination
of states. The machine accepts if after reading the string, at least one of the smaller machines has moved to
an accept state.

Formally, D = (Q,Σ, δ, qs, F) is defined as follows:

• Q = Q1 ×Q2 = {(q1, q2)|q1 ∈ Q1, q2 ∈ Q2} i.e. every state in Q contains a pair of states, one from D1

and one from D2

• Σ = Σ1 ∪ Σ2 i.e. the union of the two alphabets

• δ((q1, q2), w) = (δ1(q1, w), δ2(q2, w)), i.e. the transition function takes as input a pair of states (q1, q2)
and a symbol; it simultaneously computes the transition functions from D1 and D2, and outputs a new
pair of states. It computes where D1 should transition if it is in state q1 and reads w, and it computes
where D2 should transition if it is in state q2 and reads w. In this way, the machine runs D1 and D2

in parallel.

• qs = (qs1 , qs2) i.e. when D runs D1 and D2 in parallel, it starts with D1 and D2 in their respective
start states

• F = {(f1, f2)|f1 ∈ F1 ∨ f2 ∈ F2} i.e. D accepts if after running D1 and D2 in parallel, either machine
ends up in accept states

By construction, our machine D accepts if at least one of D1 or D2 accepts.

Corollary 4.1. Regular languages are closed under intersection. That is, if L1 and L2 are regular, then
L1 ∩ L2 is regular.

Proof. We can prove this in two ways. The first way is to use the technique of the Cartesian product
construction. However, rather than accepting if just one of the smaller machines accept, we check that both
machines accept.

Formally, let DFAs D1 = (Q1,Σ1, δ1, qs1 , F1) and D2 = (Q2,Σ2, δ2, qs2 , F2) recognize L1 and L2, respec-
tively. D = (Q,Σ, δ, qs, F) is defined as follows:

• Q = Q1 ×Q2 = {(q1, q2)|q1 ∈ Q1, q2 ∈ Q2} i.e. every state in Q contains a pair of states, one from D1

and one from D2

• Σ = Σ1 ∪ Σ2 i.e. the union of the two alphabets

• δ((q1, q2), w) = (δ1(q1, w), δ2(q2, w)), i.e. the transition function takes as input a pair of states (q1, q2)
and a symbol; it simultaneously computes the transition functions from D1 and D2, and outputs a new
pair of states. It computes where D1 should transition if it is in state q1 and reads w, and it computes
where D2 should transition if it is in state q2 and reads w. In this way, the machine runs D1 and D2

in parallel.

• qs = (qs1 , qs2) i.e. when D runs D1 and D2 in parallel, it starts with D1 and D2 in their respective
start states

• F = F1 × F2 i.e. D accepts if after running D1 and D2 in parallel, both machines end up in accept
states

7

By construction, our machine D accepts if at least one of D1 or D2 accepts.

We may also prove it using the technique of expressing intersection in terms of other operations. We
already know that regular languages are closed under union and complement. We then note that by De
Morgan’s laws

L1 ∩ L2 = (Lc1 ∪ Lc2)c

Because L1 and L2 are both regular, the expression on the right hand side is regular, thus the expression on
the left hand side is regular.

Lemma. Regular languages are closed under concatenation. That is, if L1, L2 are regular then L1 ◦ L2 is
regular.

Again, we note that L1 and L2 are recognized by machines D1 and D2. However, we can’t just run D1

and D2 in parallel; we have to first run D1, and then run D2. However, how do we know when stop running
D1 and start running D2? This will be very tricky to do with a DFA. Thankfully, there is another type of
machine that may help us.

5 Nondeterministic Finite Automata

In this section we will describe a model of computation that extends some of the abilities of a DFA.

5.1 Formal Description

Definition 5.1. Let S be a set. The power set of S, denoted P(S) is the set of all subsets of S, i.e.

P(S) = {S′|S′ ⊆ S}

Example 5.1. Let S = {1, 2, 3}. Then P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Definition 5.2. A Nonteterministic finite automata (NFA) is a 5-tuple (Q,Σ, δ, q0, F) where

1. Q is a finite set of states

2. Σ us a finite alphabet

3. δ : Q× Σε → P(Q) is the transition function, where Σε = Σ ∪ {ε}

4. qs ∈ Q is the start state

5. F ⊆ Q is the set of accept states

Some notes:

• In a DFA, the transition function takes as input a single state and a single character, and outputs a
single state. The transition function takes as input a single state, and a single character, and it outputs
a set of states.

• In a DFA, every state has exactly one transition for every symbol. In an NFA, the same state may
have multiple possible transitions for the same symbol

• In addition to the alphabet Σ, there may be transitions with the label ε. This essentially lets the NFA
transition without actually reading a character.

Example 5.2. Consider the NFA in Figure 2 The formal description is as follows:

1. Q = {q0, q1, q2, q3}

8

Figure 2: Example NFA 1

2. Σ = {0, 1}

3. We can describe the transition function in two ways. First, we’ll describe it explicitly

• δ(q0, 0) = {q0}

• δ(q0, 1) = {q0, q1}

• δ(q0, ε) = ∅

• δ(q1, 0) = {q3}

• δ(q1, 1) = ∅

• δ(q1, ε) = {q3}

• δ(q2, 0) = ∅

• δ(q2, 1) = {q3}

• δ(q2, ε) = ∅

• δ(q3, 0) = {q3}

• δ(q3, 1) = {q3}

• δ(q3, ε) = ∅

We’ll also describe it in a table

0 1 ε
q0 {q0} {q0, q1} ∅
q1 {q2} ∅ {q2}
q2 ∅ {q3} ∅
q3 {q3} {q3} ∅

4. qs = q0

5. F = {q3}

5.2 Computation on an NFA

An NFA processes a string in the same way as a DFA. It reads one character at a time and moves from
one state to state. However, when the NFA reads a character, there may be multiple different available

9

transitions. The NFA can ’choose’ which way to go. Thus, an NFA could potentially read the same string
and end up in completely different states at the end! Furthermore, the NFA may make choices and eventually
reach a point where it has no available transitions, and the computation dies. How do we define what means
for an NFA to accept a string when the NFA can behave in several different ways on the same string?

5.3 Accepting computation

Definition 5.3. An NFA accepts a string w if we can write w as w = y1y2 . . . ym, where each yi is a member
of Σε, and there exists as sequence of states r0r1, . . . , rm such that

1. ri ∈ Q for all i

2. r0 = q0

3. ri+1 ∈ δ(ri, yi+1 for all i = 0, . . . ,m− 1

4. rm ∈ F

Conditions 1, 2, and 4 are straightforward. Condition 3 states that each ri+1 is one of the (possibly
many) allowable states following ri upon reading character yi+1. Some additional notes:

• We may re-write w by inserting any number of ε transitions

• We only need there to exist at least one accepting computation path. Even if all other paths lead to a
reject state or die, just one accepting path is sufficient.

5.4 Exercises

1. Design an NFA with four states to recognize {w | w ends with bba}

2. Design an NFA with four states to recognize {w | w contains bba}

6 Equivalence of NFAs and DFAs

Theorem 6.1. A language L can be recognized by an NFA if and only if L is recognized by a DFA

Proof. Proof idea: If an NFA N recognizes L, we will construct a DFA D to recognize L. The DFA D will
simulate all the possible computation paths that N could take on a string w. D will have a state for every
possible set of states that N could be in at any time. The transition function will take in a set of states R as
input, and a character a; R represents all the possible states that R could be in at the current point in the
computation. The transition function will output all the possible states that the machine could transition
to upon reading a. After reading all characters in w, it will check if N could possibly be in an accept state.

(⇒) To prove the forward direction, we will show that if a language L can be recognized by a DFA D,
then L can be recognized by an NFA N . We simply note that since D is a DFA, D is an NFA that simply
chooses not to have any ε transitions. Thus, D is an NFA that recognizes L.

(⇐) To prove the backwards direction, we will show that if a language L can be recognized by an NFA N ,
then L can be recognized by a DFA D. To do this, we will use the technique of the power set construction.
Let N = (Qn,Σn, δn, qsn , Fn). First, let’s consider the case where there are no ε transitions. We will define
a DFA D = (Qd,Σd, δd, qsd , Fd) as follows:

1. Qd = P(Qn) i.e. the power set of the states in N

2. Σd = Σn \ {ε} i.e. same alphabet with no ε transitions

10

3. δd(R, a) = {q ∈ Qs|q ∈ δn(r, a) for some r ∈ R}

If R is a state of D, it is a set of states of N . When D reads a symbol in a state R, it shows where a
takes each state in R. Because each state may go to a set of states, we take the union of all these sets.
We could also write this as

δd(R, a) =
⋃
r∈R

δn(r, a)

4. qsd = {qsn}

5. Fd = {R ∈ Qd|R contains an accept state of N}

The machine accepts if one of the possible states that N could be in at that point is an accept state.

Now let’s consider ε transitions. For any state R ∈ Qd, define E(R) to be the collection of states that
can be reached from members of R by only going along ε transitions, including members of R themselves.

Formally, let E(R) = {q|q can be reached from R by travelling along 0 or more ε transitions}
We modify the transition function as follows:

δd(R, a) = {q ∈ Q|q ∈ E(δn(r, a)) for r ∈ R}

Alternately we could write it as

δd(R, a) =
⋃
r∈R
E(δn(r, a))

We also modify the start state to be qsd = E({qsn})

Corollary 6.1. L is regular if and only if L is recognized by an NFA

Proof. By definition, L is regular if and only if L is recognized by a DFA. By theorem 6.1, L is recognized
by a DFA if and only if L is recognized by an NFA.

Example 6.1.

Consider the example in Figure 3. We will convert this NFA to a DFA. The formal description is as
follows:

1. Q = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

2. Σ = {a, b}

3. We will write the transition function as a table

a b
∅ ∅ ∅
{1} ∅ {2}
{2} {2, 3} {3}
{3} {1, 3} ∅
{1, 2} {2, 3} {2, 3}
{1, 3} {1, 3} {2}
{2, 3} {1, 2, 3} {3}
{1, 2, 3} {1, 2, 3} {2, 3}

4. qs = E({1}) = {1, 3}

5. F = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

The final DFA shown in Figure 4.

11

Figure 3: Example NFA 2

Figure 4: NFA to DFA conversion

12

7 Closure Properties of Regular Languages

Theorem 7.1 (Kleene’s Theorem). The regular languages are closed under the regular operations

Proof. Suppose we have languages L1, L2 which are recognized by NFAs N1 = (Q1,Σ, δ, qs1 , F1), N2 =
(Q2,Σ, δ2, qs2 , F2), respectively. For simplicity we’ll assume the alphabets are the same for both languages.
We will construct an NFA N = (Q,Σ, δ, qs, F) as follows

Union: Combine N1 and N2 into a single NFA N . The machine nondeterministically guesses whether to
run w through N1 or N2, and accepts if either machine accepts.

Formally, create a new start state qs, and modify the transition function so that δ(qs, ε) = {qs1 , qs2}

Concatenation: Combine N1 and N2 into a single NFA N . The machine nondeterministically guesses how
to split up w into two substrings. It reads the first substring through N1, transitions to N2, and reads the
second substring through N2. If both machines accept the substrings that they read, N accepts.

Formally, let F1 be the accept states for N1 and qs2 be the start state for N2. Modify the transition
function so that for all f ∈ F1, qs2 ∈ δ(f, ε). The start state for N is the start state for N1. The accept
states for N are the accept states for N2.

Kleene Star: Start with N1. The machine nondeterministically guesses how to split w into several sub-
strings. It reads each substring through N1; when each substring reaches an accept state, N loops back to
the start state to read through the next substring.

Formally, let qs1 be the start state for N1, and let F1 be the accept states. Create a new start state qs.
Modify the transition function so δ(qs, ε) = {qs1}, and for all f ∈ F1, qs1 ∈ δ(f, ε). The accept states are
F1 ∪ {qs}; we make qs an accept state so that the machine accepts ε.

13

