
Theory of Computation Notes: Turing-Decidable Languages

Arjun Chandrasekhar

Here we will see that it is possible to determine many properties about DFAs. Given an arbitrary DFA,
we can determine whether that DFA will reject every string, whether it will accept any string of a certain
form, and even whether it is equivalent to another DFA.

1 DFA Acceptance

First we consider the following language

ADFA = {〈D,w〉|D is a DFA, w ∈ L(D)}

Here we receive as input two things: the description of some DFA D, as well as some string. We don’t
know what the DFA is ahead of time but want to figure out if D will accept w.

Theorem 1.1. ADFA is decidable.

Proof. We construct a machine M to decide ADFA as follows:

1. Construct the state graph for D

2. Run w through D

3. Accept if and only if w reaches an accept state

Corollary 1.1. The following language is decidable

ANFA = {〈N,w〉|N is an NFA, w ∈ L(N)}

Proof. We construct a machine M to decide ANFA as follows:

1. Convert N to an equivalent DFA D

2. Accept if and only if if 〈D,w〉 ∈ ADFA

Corollary 1.2. The following language is decidable

AREG = {〈R,w〉|R is a Regex, w ∈ L(N)}

Proof. We construct a machine M to decide AREG as follows:

1. Convert R to an equivalent regex N

2. Accept if and only if 〈N,w〉 ∈ ANFA

1

2 DFA Emptiness

We start by considering following language

EDFA = {〈D〉| D is a DFA, L(D) = ∅}

Here 〈D〉 is a description of a DFA, i.e. a list of all the states and transitions.

Theorem 2.1. EDFA is decidable.

Proof. We construct a machine M that does the following:

1. Construct the state graph for D

2. Check if there is a path from the start state of D to any of the accept states

3. If there is no path to any accept state, then M accepts

4. Otherwise, M rejects

Corollary 2.1. The following language is decidable.

L = {〈D〉|D is a DFA, L(D) 6= ∅}

Proof. First we prove it by construction. To decide L we construct a machine M that does the following:

1. Construct the state graph for D

2. Check if there is a path from the start state of D to any of the accept states

3. If there a path to any accept state, then M accepts

4. Otherwise, M rejects

Proof. The second proof makes use of the fact that decidable languages are closed under complement. We
note that L = EDFA

c. Since EDFA is decidable, so is L.

EDFA will be the foundational piece for proving that other DFA properties are decidable.

3 Decidable DFA Properties

Lemma 3.1. The following language is decidable

L = {〈D〉|x111y ∈ L(D) for at least one x, y ∈ Σ∗}

Proof. Let L2 = Σ∗111Σ∗. We first note the following:

• L2 is a regular language that can be recognized by a DFA

• Regular languages are closed under intersection

• If 〈D〉 ∈ L then L(D) ∩ L2 6= ∅. If D accepts some x111y, that same x111y is also a member of L2.
Thus the languages intersect somewhere.

To decide L we construct a machine that does the following:

2

1. Create a DFA D2 that recognizes Σ∗111Σ∗

2. Create a DFA D3 that recognizes L(D) ∩ L(D2)

3. Accept if and only if 〈D3〉 /∈ EDFA

Lemma 3.2. The following language is decidable

L = {〈D〉|x111y ∈ L(D) for all x, y ∈ Σ∗}

Proof. Here it’s not good enough to check that L(D) intersects with Σ∗111Σ∗ for at least one string. We
need to check that D accepts every string that is part of Σ∗111Σ∗. Alternately, we want to check that
Σ∗111Σ∗ ⊆ L(D).

Again, we will refer to L2 = Σ∗111Σ∗. To decide L we note the following things

• L2 is regular and it can be recognized by a DFA

• Regular languages are closed under complement and intersection

• If L2 ⊆ L(D), then L2 ∩ L(D)c = ∅. If D accepts every string in L2, it rejects nothing from L2, so L2

has nothing in common with L(D)c

To decide L we construct a machine M that does the following:

1. Construct a DFA D2 for Σ∗111Σ∗

2. Construct at DFA D3 that recognizes L(D)c

3. Construcat a DFA D4 that recognizes L(D2) ∩ L(D3)

4. Accept if and only if 〈D4〉 ∈ EDFA

4 DFA Equality

Can we check if two DFAs are equivalent? The answer is in fact yes!

Theorem 4.1. The following language is decidable

EQDFA = {〈D1, D2〉|L(D1) = L(D2)}

Proof. Suppose L(D1) = L(D2). Then the following statements are true:

• L(D1) ∩ L(D2)c = ∅, i.e. L(D1) does not include any strings that are not part of L(D2)

• L(D1)c ∩ L(D2) = ∅ (same logic)

• Because of the first two statements, we see that (L(D1) ∩ L(D2)c) ∪ (L(D1)c ∩ L(D2))

• Regular languages are closed under union, intersection, and complement

To decide EQDFA We construct a machine M that does the following:

1. Construct a DFA D3 for L(D1) ∩ L(D2)c

2. Construct a DFA D4 for L(D1)c ∩ L(D2)

3

3. Construct a DFA D5 for L(D4) ∪ L(D5)

4. Accept if and only if 〈D5〉 ∈ EDFA

Lemma 4.1. The following language is decidable

L = {〈D〉|L(D) = Σ∗111Σ∗}

Proof. We decide L as follows:

1. Construct a DFA D2 that recognizes Σ∗111Σ∗

2. Accept if and only if 〈D,D2〉 ∈ EQDFA

5 Decidable CFL Properties

Finally, we show that two languages related to properties about context-free grammars are decidable.

Theorem 5.1. The following language is decidable

ACFG = {〈G,w〉|G is a CFG, w ∈ L(G)}

Proof. To prove that ACFG is decidable, we note the following two facts:

• Every CFG has an equivalent Chomsky Normal Form grammar

• Suppose G is in CNF, and G generates a string w of length n. Then G generates w in exactly 2n− 1
steps.

We decide ACFG as follows:

1. Convert G to an equivalent grammar G′ that is in CNF

2. Let n = |w|

3. Try all possible derivations in G′ that use 2n− 1 steps

4. If any derivation generates w, accept G

5. If every derivation fails, reject G

Theorem 5.2. The following language is decidable

APDA = {〈P,w〉|P is a PDA, w ∈ L(P)}

Proof. We decide APDA as follows:

1. Convert P to an equivalent CFG G

2. Accept if and only if 〈P,w〉 ∈ ACFG

4

Theorem 5.3. The following language is decidable

ECFG = {〈G〉|G is a CFG, L(G) = ∅}

Proof. We decide ECFG as follows:

1. ‘Mark’ every terimal symbol

2. Repeat the following until no new rule is marked:

(a) Go through each rule A→ U1U2 . . . Un

(b) If U1, U2, . . . , Un are all marked, then mark A

3. Accept if and only the start variable S is not marked

5

