Theory of Computation Notes: Turing Machine Closure Properties

Arjun Chandrasekhar

1 Closure Properties of Decidable Languages

Proposition 1.1. Decidable languages are closed under union.

Proof. To prove this, we must prove that if A and B are decidable, then $A \cup B$ is decidable. We know that there exist machines M_A and M_B that decide A, B respectively. We design a machine M to decide $A \cup B$. On input w, M does the following:

- 1. Run M_A on w
- 2. Run M_B on w
- 3. If either machine accepts, M accepts. Otherwise, M rejects.

Because M_A and M_B are deciders, both will halt, so M will also halt. M halts and accepts w if and only if $w \in A$ or $w \in B$, and it rejects otherwise.

Definition 1.1. Let L be a formal language. Let $\#(L) = \{w = w_1 \# w_2 \# \dots \# w_n | w_1, w_2, \dots w_n \in L\}$, i.e. a set of strings that are all in L, with # signs separating all the strings.

Proposition 1.2. Decidable languages are closed under #

Proof. We will show that if L is decidable then #(L) is decidable. We know there is a machine M to decide L. We will design a machine #M to decide #(L). On input w, #M does the following:

- 1. Check that w is in the format $w = w_1 \# w_2 \dots w_n$. If not, reject
- 2. For each w_i , run M on w_i
- 3. If M accepts each w_i , accept. Otherwise reject

Because M decides L, M will always halt so #M will halt. #M will halt and accept w if and only if $w \in \#(L)$.

Proposition 1.3. Decidable languages are closed under Kleene star.

Proof. We will show that if L is regular then L^* is regular. We know there is a machine M that decides L. We will construct a machine M^* that recognizes L^* . On input w, M does the following:

- 1. Try all possible ways of splitting w into $w = w_1 \# w_2 \# \dots \# w_n$, i.e. try all possible ways of inserting several # signs.
 - (a) For each way of splitting it up, run M on w_1, w_2, \ldots, w_n . If M accepts on all of them, accept.
- 2. If any way of splitting up w worked, then accept; otherwise reject.

Because M is a decider for L, it will always halt. There are only a finite number of ways to split up w into substrings, so M^* will halt. If $w \in L^*$ there is some way to split up w into substrings such that M accepts every substring; otherwise, every method of splitting it up will fail. Thus, M^* decides L^*

2 Closure Properties of RE Languages

Proposition 2.1. RE languages are closed under union.

Proof. We must show that if A and B are RE, then $A \cup B$ is RE. Let M_A, M_B be the machines recognize A and B, respectively. We will design a machine M that recognizes $A \cup B$.

A naive approach would be to have M do the following on input w:

- 1. Run M_A on w
- 2. Run M_B on w
- 3. If either machine accepts, then accept. Otherwise reject.

The problem is that M_A and M_B are recognizers, not deciders. So if $w \notin A$, then M_A is not guaranteed to halt.

If $w \notin A, w \in B$, then $w \in A \cup B$, so M should accept w. But it may not. It is possible that M_A loops on w and M_B never gets the chance to accept w.

To resolve this, we introduce the technique of **running two machines in parallel**. To run M_A and M_B in parallel, we let each the two machines take turns running one step at a time. Specifically, do the following:

- 1. Run M_A for one step
- 2. Run M_B for one step
- 3. Run M_A for one more step
- 4. Run M_B for one more step
- 5. Run M_A for one more step
- 6. Run M_B for one more step

7. . . .

On input w, M does the following:

- 1. Run both M_A and M_B in parallel
- 2. If either M_A or M_B reaches an accept state, M accepts
- 3. If neither machine accepts then M will never accept

M accepts w if and only if M_A or M_B accepts w, which happens if and only if $w \in A \cup B$

Proposition 2.2. RE languages are closed under #

Proof. We will show that if L is RE then #(L) is RE. We know there is a machine M to recognize L. We will design a machine #M to recognize #L. On input w, #M does the following:

- 1. Check that w is in the format $w = w_1 \# w_2 \dots w_n$. If not, reject
- 2. For each w_i , run M on w_i in parallel
- 3. If M accepts each w_i , accept.

Because M recognizes L, M will always halt and accept if $w_i \in L$. This means #M will halt and accept if every $w_i \in L$. If any $w_i \notin L$ then M may loop, so #M may halt, but it won't accept (which is good enough).

Proposition 2.3. Decidable languages are closed under Kleene star.

Proof. We will show that if L is regular then L^* is regular. We know there is a machine M that decides L. We will construct a machine M^* that recognizes L^* . On input w, M does the following:

- 1. Try all possible ways of splitting w into $w = w_1 \# w_2 \# \dots \# w_n$, i.e. try all possible ways of inserting several # signs. We do this part in parallel
 - (a) For each way of splitting it up, run M on w_1, w_2, \ldots, w_n . We also do this part in parallel. If M accepts on all of them, accept.
- 2. If any way of splitting up w worked, then M^* accepts.

Because M is a recognizer for L, it will always halt and accept if $w \in L$. There are only a finite number of ways to split up w into substrings, so M^* can try all of these ways in parallel. If we split up $w = w_1 \# w_2 \# \dots \# w_n$ correctly, each w_i will be accepted by M, so M^* will accept this way of splitting up w. If there is no valid way to split up w, then M^* may loop, but that's ok.

2.1 Exercises

1. Prove that decidable languages are closed under complement.

- 2. Prove that decidable languages are closed under intersection.
- 3. Prove that RE languages are closed under complement.
- 4. Prove that RE languages are closed under intersection.