Theory of Computation Complexity classes, P, EXP

Complexity classes

- In other CS classes, we might ask what problems can we solve in a particular runtime (e.g. O(n), O(n²), etc.)
- In this class, we are more interested in coarser classifications
 - what problems require the same "level/tier" of resources
 - Which problems can be solved "efficiently"?
 - What problems can't be solved efficiently?

Complexity classes

- Recall: a language is a set of strings
- Def: a complexity class is a set of *languages*
- We have already seen some complexity classes:
 - REG: the regular languages
 - D: the decidable languages
 - ▶ RE: the recursively enumerable languages
- Some of these classes are bigger than others!

TIME-based complexity classes

- Let $T : \mathbb{N} \to \mathbb{N}$ be a runtime function
- Def: The class TIME(T(n)) is the set of all languages that can be decided by a machine that runs in O(T(n)) time
- The language L = {0^k1^k | k ≥ 0} ∈ TIME(n²)
 In fact, L ∈ TIME(n log(n)) see Sipser

The class P

- We want a working definition what it means for a problem to be solved "efficiently"
- Def: The class P is the set of all languages that can be decided in polynomial time

• $O(n^c)$ for some constant c

Alternate definition:

$$\mathbf{P} = \bigcup_{c} \mathrm{TIME}(T(n^{c}))$$

In this course, we will use P as a proxy for "tractable" problems

Length of numeric inputs

- The numeric value of a number isn't the same as the length of its encoding!
- Let's consider the number n = 16
- Unary encoding: $\langle 16 \rangle = \underbrace{11111111111111111}_{|\langle n \rangle| \in O(n)}$
- **•** Binary encoding: $\langle 16 \rangle = \underbrace{10000}_{\substack{|\langle n \rangle| \in O(\log(n))\\ n \in O(2^{|\langle n \rangle|})}}$
- An 8-byte unary integer cannot represent numbers bigger than 32!!!
- If the input is in binary (or base 10 or base 16), we have to be careful about runtime analysis

What is the running time of this algorithm?

1. Receive a number $\langle N \rangle$ as input in binary

2. For
$$i = 2...(N-1)$$
:

2.1 If N % i == 0, immediately reject

3. If we finish the loop, accept

What is the running time of this algorithm?

- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N-1):

2.1 If N % i == 0, immediately reject

- 3. If we finish the loop, accept
- O(N) loop iterations

What is the running time of this algorithm?

1. Receive a number $\langle N \rangle$ as input in binary

2. For
$$i = 2...(N-1)$$
:

2.1 If N % i == 0, immediately reject

- 3. If we finish the loop, accept
- O(N) loop iterations
- $\blacktriangleright |\langle N \rangle| = O(\log(N))$
- $\blacktriangleright N = 2^{|\langle N \rangle|}$
- ► O(2^{|⟨N⟩|}) loop iterations!!!
- This is exponential in the length of the input!!!

The language COPRIMES

 $COPRIMES = \{ \langle x, y \rangle | gcd(x, y) = 1 \}$

- We receive two binary numbers as input
- We want to check if they have any common factors (besides 1)
- Naive approach: for i = 1,..., min(x, y), check if i is a common factor, and output the maximum common factor found
- This is O(n) in the value of x and y...
- ...which is $O(2^n)$ in the *length* of $\langle x, y \rangle$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject **Claim:** This step cuts x in half

Case 1:
$$y \le \frac{x}{2}$$
. Then $x \% y < y \le \frac{x}{2}$
Case 2: $y > \frac{x}{2}$. Then $x \% y = x - y < \frac{x}{2}$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

1. If
$$x < y$$
, swap x and y

2. Repeat until y = 0:

2.1
$$x \leftarrow x \% y$$

2.2 Swap x and y

3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: There are $O(n = |\langle x, y \rangle|)$ loop iterations

- After two iterations, both x and y have been cut in half
- ► The number of times we can cut the input in half is log(max{x, y}) = O(|⟨x, y⟩|)

 $13 \, / \, 39$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:

$$2.1 \quad x \leftarrow x \% y$$

- 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject
- Modular reduction (and other arithmetic) can be calculated in polynomial time
- O(n) loop iterations ×O(n^c) steps per loop iteration = O(n^c) ∈ P

The language UNARY-SUBSET-SUM

$$\begin{array}{l} \text{UNARY-SUBSET-SUM} = \\ & B \text{ is unary} \\ \left\{ \langle B | x_1, x_2, \ldots x_n \rangle | \text{there is a combination of } x_i \text{ (no repeats)} \\ & \text{that add up to B} \end{array} \right\} \end{array}$$

Example:
$$(31|7, 4, 9, 5, 20)$$

Solution: $7 + 4 + 20 = 31\checkmark$

Example: (101|6, 8, 10)**Solution:** It is impossible; 6 + 8 + 10 = 24 < 101

10

Which of the following sets are part of UNARY-SUBSET-SUM?

- A. $\langle 0|1,2,3,4,5\rangle$
- **B.** ⟨13|3, 3, 3⟩
- C. $\langle 40|13,26,15,24\rangle$
- **D.** $\langle 45|2, 3, 10, 17, 30 \rangle$

10

Which of the following sets are part of UNARY-SUBSET-SUM?

- A. $\langle 0|1,2,3,4,5 \rangle$ \checkmark
- **B.** $\langle 13|3,3,3 \rangle$
- **C.** $\langle 40|13, 26, 15, 24 \rangle$
- **D.** $\langle 45|2, 3, 10, 17, 30 \rangle$ \checkmark

Technique: dynamic programming

1.
$$A \leftarrow (n+1) \times (B+1)$$
 matrix.

2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE

3. For
$$i = 1 \dots n$$
:
3.1 For $j = 1 \dots B$:
3.1.1 If $A[i - 1, j] = \text{TRUE}$, or if $j \ge x_i$ and
 $A[i - 1, j - x_i] = \text{TRUE}$, set $A[i]$ to TRUE
4. If $A[n, B] = \text{TRUE}$, accept $\langle B, x_1, \dots, x_n \rangle$.

Otherwise, reject

Technique: dynamic programming

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For i = 1 ... n:
 - 3.1 For $j = 1 \dots B$:
 - 3.1.1 If A[i-1,j] = TRUE, or if $j \ge x_i$ and
 - $A[i-1, j-x_i] = \text{TRUE}$, set A[i] to TRUE
- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \dots, x_n \rangle$. Otherwise, reject
- ► O(n) outer loop iterations

Technique: dynamic programming

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all *i*; Initialize all other elements to FALSE
- 3. For i = 1 ... n: 3.

1 For
$$j = 1 ... B$$
:

3.1.1 If A[i-1, j] = TRUE, or if $j \ge x_i$ and $A[i-1, j-x_i] = \text{TRUE}$, set A[i] to TRUE

- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \ldots, x_n \rangle$. Otherwise, reject
- O(n) outer loop iterations
- O(B) inner loop iterations = $O(|\langle B \rangle|)$ since the input is unary

Technique: dynamic programming

1.
$$A \leftarrow (n+1) \times (B+1)$$
 matrix.

2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE

3. For
$$i = 1 \dots n$$
:
3.1 For $j = 1 \dots B$:
3.1.1 If $A[i-1,j] = \text{TRUE}$, or if $j \ge x_i$ and
 $A[i-1,j-x_i] = \text{TRUE}$, set $A[i]$ to TRUE

- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \dots, x_n \rangle$. Otherwise, reject
- O(n) outer loop iterations
- O(B) inner loop iterations = O(|⟨B⟩|) since the input is unary
- ► $O(B \cdot n) \in \overline{P}$

The language PATH

$PATH = \{\langle G, s, t \rangle | G \text{ is a digraph with an s-t path} \}$

Technique: Perform a *breadth-first search*

- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v

19

3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.

Technique: Perform a breadth-first search

- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v

19

- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.
- ► *O*(|*V*|) rounds

Technique: Perform a *breadth-first search*

- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v

19

- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.
- O(|V|) rounds
- O(|E|) edge lookups per round

Technique: Perform a *breadth-first search*

- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v
- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.
- O(|V|) rounds
- O(|E|) edge lookups per round
- $\blacktriangleright O(|V| \cdot |E|) \in \mathbf{P}$

1. Mark vertex S

2. Mark all neighbors of S (and their neighbors, and so on)

3. Continue until T gets marked...

4. ...or until we can't mark further

Logical symbols

AND

Inputs		Output
A	B	С
0	0	0
0	1	0
1	0	0
1	1	1

Inputs		Output
A	B	С
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output
A	C
0	1
1	0

AND (∧): all inputs must be TRUE
OR (∨): at least one input must be TRUE
NOT (¬): input must be FALSE

Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE. Which of the following expressions are TRUE?

 A) x
 E) $(x \lor y) \land (y \lor z)$

 B) z
 F) $\neg x \lor (\neg y \lor \neg z)$

C) $y \lor z$ G) $(x \land y) \land (y \land z)$

D) $\neg(x \land y)$ **H)** $(x \lor y) \land (z \lor z \lor z)$

Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE. Which of the following expressions are TRUE?

A) $x \checkmark$ E) $(x \lor y) \land (y \lor z) \checkmark$ B) zF) $\neg x \lor (\neg y \lor \neg z)\checkmark$ C) $y \lor z \checkmark$ G) $(x \land y) \land (y \land z)$ D) $\neg (x \land y)$ H) $(x \lor y) \land (z \lor z \lor z)$

Conjunctive Normal Form Def: A Conjunctive Normal Form (CNF) formula is an expression of the following form: 1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \ldots C_n$$

2. Each clause is conjunction of several variables

$$C_i = (x_{i_1} \vee x_{i_2} \vee \ldots x_{i_n})$$

 Each variable can be either positive x_i or negative ¬x_i

Examples:

$$(x_{1} \lor x_{2} \lor x_{3}) \land (x_{4} \lor x_{5}) \land (x_{1} \lor \neg x_{1}) \land (x_{2} \lor x_{3} \lor x_{4} \lor x_{5} \lor \neg x_{1}) \land (\neg x_{2})$$

$$23 / 39$$

Conjunctive Normal Form

Which of the following expressions are in conjunctive normal form?

A)
$$(x_1)$$

B) (x_2)
C) $(\neg x_1 \lor \neg x_1)$
D) $\neg (x_1 \lor x_1)$
E) $(x_1 \land x_2 \land x_3) \lor (x_4 \land x_5)$
F) $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6)$
G) $(x_1 \lor x_2 \lor x_3) \lor (\neg x_1 \lor \neg x_2)$
H) $(x_1 \land x_2 \land x_3) \land (\neg x_1 \land \neg x_2)$

Conjunctive Normal Form

Which of the following expressions are in conjunctive normal form?

A)
$$(x_1) \checkmark$$

B) $(x_2) \checkmark$
C) $(\neg x_1 \lor \neg x_1) \checkmark$
D) $\neg (x_1 \lor x_1)$
E) $(x_1 \land x_2 \land x_3) \lor (x_4 \land x_5)$
F) $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \checkmark$
G) $(x_1 \lor x_2 \lor x_3) \lor (\neg x_1 \lor \neg x_2)$
H) $(x_1 \land x_2 \land x_3) \land (\neg x_1 \land \neg x_2)$

- Def: A truth assignment sets every variable to either TRUE or FALSE
 - ▶ Note: If x_i is FALSE then $\neg x_i$ is TRUE
- A CNF clause is satisfied if at least one of its variables is TRUE
- A CNF formula is satisfied if *all* of its clauses are satisfied
- A CNF formula is satisfiable if there exists a satisfying assignment

$$\mathsf{F} = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (x_2) \land (\neg x_5 \lor \neg x_1)$$

$$\begin{array}{l} x_1 = x_4 = x_5 = \mathrm{TRUE} \\ x_2 = x_3 = \mathrm{FALSE} \end{array}$$

Which clauses are satisfied?

A)
$$(x_1 \lor x_2 \lor x_3)$$

B) $(\neg x_1 \lor x_3 \lor x_4)$
C) (x_2)
D) $(\neg x_5 \lor \neg x_1)$

$$\mathsf{F} = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (x_2) \land (\neg x_5 \lor \neg x_1)$$

$$\begin{array}{l} x_1 = x_4 = x_5 = \mathrm{TRUE} \\ x_2 = x_3 = \mathrm{FALSE} \end{array}$$

Which clauses are satisfied?

A)
$$(x_1 \lor x_2 \lor x_3) \checkmark$$

B) $(\neg x_1 \lor x_3 \lor x_4) \checkmark$
C) (x_2)
D) $(\neg x_5 \lor \neg x_1)$

CNF Satisfiability

 $\begin{array}{l} x_1 = x_4 = x_5 = \mathrm{TRUE} \\ x_2 = x_3 = \mathrm{FALSE} \end{array}$

Which of the following formulas are satisfied?

A)
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_4 \lor x_5)$$

B) $F = (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_4) \land (x_5)$
C) $F = (x_1) \land (x_2) \land (x_3) \land (x_4) \land (x_5)$
D) $F = (\neg x_1 \lor \neg x_4 \lor x_5) \land (x_2 \lor x_3)$

CNF Satisfiability

$$x_1 = x_4 = x_5 = \text{TRUE}$$

 $x_2 = x_3 = \text{FALSE}$

Which of the following formulas are satisfied?

A)
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_4 \lor x_5) \checkmark$$

B) $F = (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_4) \land (x_5) \checkmark$
C) $F = (x_1) \land (x_2) \land (x_3) \land (x_4) \land (x_5)$
D) $F = (\neg x_1 \lor \neg x_4 \lor x_5) \land (x_2 \lor x_3)$

Which of the following formulas are satisfiable?

A)
$$F = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6)$$

B) $F = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$
C) $F = (x_1) \land (\neg x_2)$
D) $F = (x_1) \land (\neg x_1)$

Which of the following formulas are satisfiable?

A)
$$F = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \checkmark$$

B) $F = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \checkmark$
C) $F = (x_1) \land (\neg x_2) \checkmark$
D) $F = (x_1) \land (\neg x_1)$

CNF Satisiability

Is the following formula satisfiable?

$$(x_1 ee x_3) \land (\neg x_1 ee \neg x_3) \land (x_1 ee x_2) \land (\neg x_1 ee x_3) \land (x_1 ee \neg x_3)$$

$$29 \, / \, 39$$

CNF Satisiability

Is the following formula satisfiable?

 $(x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_1 \lor \neg x_3)$

These four clauses can't all be satisfied!

The language 2-SAT Def: A 2-CNF Formula is a CNF formula with at

most 2 variables in each clause

$$2\text{-SAT} = \{F|F \text{ is a satisfiable } 2\text{-CNF formula}\}$$

Which of these formulas are in the language 2-SAT?

A)
$$(x_1 \lor x_2) \land (x_3 \lor x_4)$$

B) $(x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1)$
C) $(x_1) \land (x_2) \land (x_3)$
D) $(x_1 \lor x_2 \lor x_3)$

The language 2-SAT Def: A 2-CNF Formula is a CNF formula with at

most 2 variables in each clause

$$2\text{-SAT} = \{F|F \text{ is a satisfiable } 2\text{-CNF formula}\}$$

Which of these formulas are in the language 2-SAT?

A)
$$(x_1 \lor x_2) \land (x_3 \lor x_4) \checkmark$$

B) $(x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1)$
C) $(x_1) \land (x_2) \land (x_3) \checkmark$
D) $(x_1 \lor x_2 \lor x_3)$

Consider the following formula:

$${\sf F}=(x_1ee
eg x_2)\wedge (x_2ee x_3)\wedge (
eg x_3ee
eg x_4)\wedge (x_4ee x_1)$$

Consider the following formula:

$$F = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee x_1)$$

• If x_1 is FALSE then x_2 must be FALSE

Consider the following formula:

 $F = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee x_1)$

If x₁ is FALSE then x₂ must be FALSE
If x₂ is FALSE, then x₃ must be TRUE

Consider the following formula:

 $F = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee x_1)$

If x₁ is FALSE then x₂ must be FALSE
If x₂ is FALSE, then x₃ must be TRUE
If x₃ is TRUE then x₄ must be FALSE

Consider the following formula:

 $F = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee x_1)$

If x₁ is FALSE then x₂ must be FALSE
If x₂ is FALSE, then x₃ must be TRUE
If x₃ is TRUE then x₄ must be FALSE
If x₄ is FALSE then x₁ must be TRUE

Consider the following formula:

$$\mathsf{F} = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee \neg x_1)$$

• If x_1 is TRUE then x_4 must be TRUE

Consider the following formula:

$$F = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee \neg x_1)$$

If x₁ is TRUE then x₄ must be TRUE
If x₄ is TRUE, then x₃ must be FALSE

Consider the following formula:

 $F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee \neg x_1)$

If x₁ is TRUE then x₄ must be TRUE
If x₄ is TRUE, then x₃ must be FALSE
If x₃ is FALSE then x₂ must be TRUE

Consider the following formula:

 $F = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_3 \vee \neg x_4) \land (x_4 \vee \neg x_1)$

- If x_1 is TRUE then x_4 must be TRUE
- ▶ If x_4 is TRUE, then x_3 must be FALSE
- ▶ If x_3 is FALSE then x_2 must be TRUE
- If x₂ is TRUE then x₁ must be TRUE which it is!

2-SAT implication graph

- Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_j must be TRUE

$$\neg x_i \implies x_j$$

- ▶ If x_j is FALSE then x_i must be true ▶ $\neg x_i \implies x_i$
- If $x_i \implies x_j$ and $x_j \implies x_k$ then $x_i \implies x_k$ (transitive property)
- We can use an implication graph to represent these relationships
 - Every node is variable
 - Every edge is an implication
 - Every path is a (transitive) implication

2-SAT implication graph

 $(\neg x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_2 \lor x_3)$

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- O(n) vertices + O(m) edges

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- O(n) vertices + O(m) edges
 O(n) loop iterations

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- O(n) vertices + O(m) edges
- O(n) loop iterations
- ▶ $PATH \in P$, each loop iteration is poly-time

Input: a formula F with n variables and m clauses

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- O(n) vertices + O(m) edges
- ► O(n) loop iterations
- ▶ $PATH \in P$, each loop iteration is poly-time
- $O(n) + O(m) + O(n) \cdot \text{poly-time} \in P$

The class EXP

Def: The class EXP is the set of all languages that can be be decided in exponential time
 O(2^{n^c}) for some constant c
 Alternate definition:

$$\mathrm{EXP} = \bigcup_{c} \mathrm{TIME}(T(2^{n^{c}}))$$

EXP languages are considered "intractable"

P vs. EXP

- Note: $P \subseteq EXP$
- Does P = EXP?
 - Can every exponential-time algorithm be converted to a polynomial-time algorithm?

Time hierarchy theorem

- ▶ Time Hierarchy Theorem: TIME(T(n)) \subseteq TIME($T(2n)^3$)
 - Proof idea: Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines
 - The construction creates a machine that runs in time $O(T(2n)^3)$
- Glass half full: More time will *always* allow us to solve more more problems
- Glass half empty: Certain problems can't be solved within a certain amount of time

Time hierarchy theorem

- ▶ Time Hierarchy Theorem: TIME(T(n)) \subsetneq TIME($T(2n)^3$)
 - Proof idea: Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines
 - The construction creates a machine that runs in time $O(T(2n)^3)$
- Glass half full: More time will *always* allow us to solve more more problems
- Glass half empty: Certain problems can't be solved within a certain amount of time

$P \subseteq TIME(2^n) \subsetneq TIME((2^{2n})^3) \subseteq EXP$