
Theory of Computation
Complexity classes, P, EXP

1 / 39



Complexity classes

I In other CS classes, we might ask what

problems can we solve in a particular runtime

(e.g. O(n), O(n
2
), etc.)

I In this class, we are more interested in coarser

classifications

I what problems require the same “level/tier” of

resources

I Which problems can be solved “e�ciently”?

I What problems can’t be solved e�ciently?
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Complexity classes
I Recall: a language is a set of strings

I Def: a complexity class is a set of languages
I We have already seen some complexity classes:

I REG: the regular languages

I D: the decidable languages

I RE: the recursively enumerable languages

I Some of these classes are bigger than others!
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TIME-based complexity classes

I Let T : N! N be a runtime function

I Def: The class TIME(T (n)) is the set of all

languages that can be decided by a machine

that runs in O(T (n)) time

I The language L = {0k1k |k � 0} 2 TIME(n2)
I In fact, L 2 TIME(n log(n)) - see Sipser
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The class P

I We want a working definition what it means for

a problem to be solved “e�ciently”

I Def: The class P is the set of all languages

that can be decided in polynomial time

I O(n
c
) for some constant c

I Alternate definition:

P =

[

c

TIME(T (n
c
))

I In this course, we will use P as a proxy for

“tractable” problems
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Length of numeric inputs
I The numeric value of a number isn’t the same

as the length of its encoding!

I Let’s consider the number n = 16

I Unary encoding: h16i = 1111111111111111| {z }
|hni|2O(n)

I Binary encoding: h16i = 10000| {z }
|hni|2O(log(n))
n2O(2|hni|)

I An 8-byte unary integer cannot represent

numbers bigger than 32!!!

I If the input is in binary (or base 10 or base 16),

we have to be careful about runtime analysis
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Runtime with numeric inputs
What is the running time of this algorithm?

1. Receive a number hNi as input in binary

2. For i = 2...(N � 1):

2.1 If N % i == 0, immediately reject

3. If we finish the loop, accept

I O(N) loop iterations

I |hNi| = O(log(N))

I N = 2
|hNi|

I O(2
|hNi|

) loop iterations!!!

I This is exponential in the length of the input!!!
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Runtime with numeric inputs
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The language COPRIMES

COPRIMES = {hx , yi| gcd(x , y) = 1}

I We receive two binary numbers as input

I We want to check if they have any common

factors (besides 1)

I Naive approach: for i = 1, . . . ,min(x , y),
check if i is a common factor, and output the

maximum common factor found

I This is O(n) in the value of x and y ...

I ...which is O(2
n
) in the length of hx , yi
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COPRIMES 2 P

We will use the Euclidean Algorithm – possibly

the oldest recorded algorithm

1. If x < y , swap x and y

2. Repeat until y = 0:

2.1 x  x % y

2.2 Swap x and y

3. If x = 1, accept hx , yi; otherwise reject
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COPRIMES 2 P
We will use the Euclidean Algorithm – possibly

the oldest recorded algorithm

1. If x < y , swap x and y

2. Repeat until y = 0:

2.1 x  x % y

2.2 Swap x and y

3. If x = 1, accept hx , yi; otherwise reject

Claim: This step cuts x in half

I Case 1: y  x

2
. Then x % y < y  x

2

I Case 2: y >
x

2
. Then x % y = x � y <

x

2
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COPRIMES 2 P
We will use the Euclidean Algorithm – possibly

the oldest recorded algorithm

1. If x < y , swap x and y

2. Repeat until y = 0:

2.1 x  x % y

2.2 Swap x and y

3. If x = 1, accept hx , yi; otherwise reject

Claim: There are O(n = |hx , yi|) loop iterations

I After two iterations, both x and y have been

cut in half

I The number of times we can cut the input in

half is log(max{x , y}) = O(|hx , yi|)
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COPRIMES 2 P
We will use the Euclidean Algorithm – possibly

the oldest recorded algorithm

1. If x < y , swap x and y

2. Repeat until y = 0:

2.1 x  x % y

2.2 Swap x and y

3. If x = 1, accept hx , yi; otherwise reject

I Modular reduction (and other arithmetic) can

be calculated in polynomial time

I O(n) loop iterations ⇥O(n
c
) steps per loop

iteration = O(n
c
) 2 P
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The language UNARY-SUBSET-SUM

UNARY-SUBSET-SUM =⇢
hB |x1, x2, . . . xni|

B is unary
there is a combination of xi (no repeats)

that add up to B

�

Example: h31|7, 4, 9, 5, 20i
Solution: 7 + 4 + 20 = 31X

Example: h101|6, 8, 10i
Solution: It is impossible; 6 + 8 + 10 = 24 < 101

15 / 39



The language UNARY-SUBSET-SUM

Which of the following sets are part of

UNARY-SUBSET-SUM?

A. h0|1, 2, 3, 4, 5i

X

B. h13|3, 3, 3i
C. h40|13, 26, 15, 24i
D. h45|2, 3, 10, 17, 30i

X
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UNARY-SUBSET-SUM 2 P
Technique: dynamic programming

1. A (n + 1)⇥ (B + 1) matrix.

2. Initialize A[i , 0] to TRUE for all i ; Initialize all

other elements to FALSE
3. For i = 1 . . . n:

3.1 For j = 1 . . .B :
3.1.1 If A[i � 1, j ] = TRUE, or if j � xi and

A[i � 1, j � xi ] = TRUE, set A[i ] to TRUE

4. If A[n,B] = TRUE, accept hB , x1, . . . , xni.
Otherwise, reject

I O(n) outer loop iterations

I O(B) inner loop iterations = O(|hBi|) since
the input is unary

I O(B · n) 2 P
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The language PATH

PATH = {hG , s, ti|G is a digraph with an s-t path}
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PATH 2 P
Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes

are marked

2.1 Scan all edges. If there is an edge (u, v) where u is

marked and v is unmarked, mark v

3. If t is marked, accept hG , s, ti. Otherwise,
reject.

I O(|V |) rounds
I O(|E |) edge lookups per round

I O(|V | · |E |) 2 P
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PATH 2 P
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Logical symbols

I AND (^): all inputs must be TRUE
I OR (_): at least one input must be TRUE
I NOT (¬): input must be FALSE
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Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE.
Which of the following expressions are TRUE?

A) x

X

B) z

C) y _ z

X

D) ¬(x ^ y)

E) (x _ y) ^ (y _ z)

X

F) ¬x _ (¬y _ ¬z)

X

G) (x ^ y) ^ (y ^ z)

H) (x _ y) ^ (z _ z _ z)
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Conjunctive Normal Form
Def: A Conjunctive Normal Form (CNF)

formula is an expression of the following form:

1. Disjunction of several clauses

F = C1 ^ C2 ^ . . .Cn

2. Each clause is conjunction of several variables

Ci = (xi1 _ xi2 _ . . . xin)

3. Each variable can be either positive xi or

negative ¬xi
Examples:

I (x1 _ x2 _ x3) ^ (x4 _ x5)

I (x1 _ ¬x1) ^ (x2 _ x3 _ x4 _ x5 _ ¬x1) ^ (¬x2)
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Conjunctive Normal Form

Which of the following expressions are in

conjunctive normal form?

A) (x1)

X

B) (x2)

X

C) (¬x1 _ ¬x1)

X

D) ¬(x1 _ x1)

E) (x1 ^ x2 ^ x3) _ (x4 ^ x5)

F) (x1 _ x2 _ x3) ^ (x4 _ x5 _ x6)

X

G) (x1 _ x2 _ x3) _ (¬x1 _ ¬x2)
H) (x1 ^ x2 ^ x3) ^ (¬x1 ^ ¬x2)
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Conjunctive Normal Form

Which of the following expressions are in

conjunctive normal form?

A) (x1) X
B) (x2) X
C) (¬x1 _ ¬x1) X
D) ¬(x1 _ x1)

E) (x1 ^ x2 ^ x3) _ (x4 ^ x5)

F) (x1 _ x2 _ x3) ^ (x4 _ x5 _ x6) X
G) (x1 _ x2 _ x3) _ (¬x1 _ ¬x2)
H) (x1 ^ x2 ^ x3) ^ (¬x1 ^ ¬x2)
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CNF Satisfying Assignment

I Def: A truth assignment sets every variable

to either TRUE or FALSE
I Note: If xi is FALSE then ¬xi is TRUE

I A CNF clause is satisfied if at least one of its

variables is TRUE
I A CNF formula is satisfied if all of its clauses

are satisfied

I A CNF formula is satisfiable if there exists a

satisfying assignment
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CNF Satisfying Assignment

F = (x1_x2_x3)^(¬x1_x3_x4)^(x2)^(¬x5_¬x1)

x1 = x4 = x5 = TRUE
x2 = x3 = FALSE

Which clauses are satisfied?

A) (x1 _ x2 _ x3)

X

B) (¬x1 _ x3 _ x4)

X

C) (x2)

D) (¬x5 _ ¬x1)
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CNF Satisfying Assignment

F = (x1_x2_x3)^(¬x1_x3_x4)^(x2)^(¬x5_¬x1)

x1 = x4 = x5 = TRUE
x2 = x3 = FALSE

Which clauses are satisfied?

A) (x1 _ x2 _ x3) X
B) (¬x1 _ x3 _ x4) X
C) (x2)
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CNF Satisfiability
x1 = x4 = x5 = TRUE
x2 = x3 = FALSE

Which of the following formulas are satisfied?

A) F = (x1 _ x2 _ ¬x3) ^ (x4 _ x5)

X

B) F = (x1 _ ¬x2 _ x3 _ ¬x4) ^ (x5)

X

C) F = (x1) ^ (x2) ^ (x3) ^ (x4) ^ (x5)

D) F = (¬x1 _ ¬x4 _ x5) ^ (x2 _ x3)
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CNF Satisfying Assignment

Which of the following formulas are satisfiable?

A) F = (x1 _ x2 _ x3) ^ (x4 _ x5 _ x6)

X

B) F = (x1 _ x2 _ x3) ^ (¬x1 _ ¬x2 _ ¬x3)

X

C) F = (x1) ^ (¬x2)

X

D) F = (x1) ^ (¬x1)
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CNF Satisfying Assignment

Which of the following formulas are satisfiable?

A) F = (x1 _ x2 _ x3) ^ (x4 _ x5 _ x6) X

B) F = (x1 _ x2 _ x3) ^ (¬x1 _ ¬x2 _ ¬x3) X

C) F = (x1) ^ (¬x2) X

D) F = (x1) ^ (¬x1)
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CNF Satisiability

Is the following formula satisfiable?

(x1 _ x3)^(¬x1 _ ¬x3)^(x1_x2)^(¬x1 _ x3)^(x1 _ ¬x3)

These four clauses can’t all be satisfied!

29 / 39



CNF Satisiability

Is the following formula satisfiable?

(x1 _ x3)^(¬x1 _ ¬x3)^(x1_x2)^(¬x1 _ x3)^(x1 _ ¬x3)

These four clauses can’t all be satisfied!

29 / 39



The language 2-SAT
Def: A 2-CNF Formula is a CNF formula with at

most 2 variables in each clause

2-SAT = {F |F is a satisfiable 2-CNF formula}

Which of these formulas are in the language 2-SAT?

A) (x1 _ x2) ^ (x3 _ x4)

X

B) (x1 _ x1) ^ (¬x1 _ ¬x1)
C) (x1) ^ (x2) ^ (x3)

X

D) (x1 _ x2 _ x3)
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Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x3 _ ¬x4) ^ (x4 _ x1)

I If x1 is FALSE then x2 must be FALSE
I If x2 is FALSE, then x3 must be TRUE
I If x3 is TRUE then x4 must be FALSE
I If x4 is FALSE then x1 must be TRUE

31 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x3 _ ¬x4) ^ (x4 _ x1)

I If x1 is FALSE then x2 must be FALSE

I If x2 is FALSE, then x3 must be TRUE
I If x3 is TRUE then x4 must be FALSE
I If x4 is FALSE then x1 must be TRUE

31 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x3 _ ¬x4) ^ (x4 _ x1)

I If x1 is FALSE then x2 must be FALSE
I If x2 is FALSE, then x3 must be TRUE

I If x3 is TRUE then x4 must be FALSE
I If x4 is FALSE then x1 must be TRUE

31 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x3 _ ¬x4) ^ (x4 _ x1)

I If x1 is FALSE then x2 must be FALSE
I If x2 is FALSE, then x3 must be TRUE
I If x3 is TRUE then x4 must be FALSE

I If x4 is FALSE then x1 must be TRUE

31 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x3 _ ¬x4) ^ (x4 _ x1)

I If x1 is FALSE then x2 must be FALSE
I If x2 is FALSE, then x3 must be TRUE
I If x3 is TRUE then x4 must be FALSE
I If x4 is FALSE then x1 must be TRUE

31 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x3 _ ¬x4) ^ (x4 _ x1)

I If x1 is FALSE then x2 must be FALSE
I If x2 is FALSE, then x3 must be TRUE
I If x3 is TRUE then x4 must be FALSE
I If x4 is FALSE then x1 must be TRUE

31 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2)^(x2 _ x3)^(¬x3 _ ¬x4)^(x4 _ ¬x1)

I If x1 is TRUE then x4 must be TRUE

I If x4 is TRUE, then x3 must be FALSE
I If x3 is FALSE then x2 must be TRUE
I If x2 is TRUE then x1 must be TRUE - which

it is!

32 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2)^(x2 _ x3)^(¬x3 _ ¬x4)^(x4 _ ¬x1)

I If x1 is TRUE then x4 must be TRUE
I If x4 is TRUE, then x3 must be FALSE

I If x3 is FALSE then x2 must be TRUE
I If x2 is TRUE then x1 must be TRUE - which

it is!

32 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2)^(x2 _ x3)^(¬x3 _ ¬x4)^(x4 _ ¬x1)

I If x1 is TRUE then x4 must be TRUE
I If x4 is TRUE, then x3 must be FALSE
I If x3 is FALSE then x2 must be TRUE

I If x2 is TRUE then x1 must be TRUE - which

it is!

32 / 39



Satisfying a 2-CNF Formula

Consider the following formula:

F = (x1 _ ¬x2)^(x2 _ x3)^(¬x3 _ ¬x4)^(x4 _ ¬x1)

I If x1 is TRUE then x4 must be TRUE
I If x4 is TRUE, then x3 must be FALSE
I If x3 is FALSE then x2 must be TRUE
I If x2 is TRUE then x1 must be TRUE - which

it is!

32 / 39



2-SAT implication graph
I Suppose we have a clause C = (xi _ xj)

I If xi is FALSE then xj must be TRUE
I ¬xi =) xj

I If xj is FALSE then xi must be true

I ¬xj =) xi

I If xi =) xj and xj =) xk then xi =) xk

(transitive property)

I We can use an implication graph to represent

these relationships

I Every node is variable

I Every edge is an implication

I Every path is a (transitive) implication

33 / 39



2-SAT implication graph
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2-SAT implication graph
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2-SAT 2 P
Input: a formula F with n variables and m clauses

1. Create the implication graph for F

2. For every variable xi do the following

2.1 Check if there is a path from xi to ¬xi
2.2 Check if there is a path from ¬xi to xi

2.3 If both paths exist, there is a contradiction.

Immediately reject F

3. If there are no contradictions, accept F

I O(n) vertices + O(m) edges

I O(n) loop iterations

I PATH 2 P, each loop iteration is poly-time

I O(n) + O(m) + O(n) · poly-time 2 P
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The class EXP

I Def: The class EXP is the set of all languages

that can be be decided in exponential time

I O(2
nc
) for some constant c

I Alternate definition:

EXP =

[

c

TIME(T (2
n
c

))

I EXP languages are considered “intractable”
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P vs. EXP

I Note: P ✓ EXP
I Does P = EXP?

I Can every exponential-time algorithm be converted

to a polynomial-time algorithm?
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Time hierarchy theorem
I Time Hierarchy Theorem:

TIME(T (n)) ( TIME(T (2n)
3
)

I Proof idea: Use diagonalization to create a

machine that contradicts all the TIME(T (n))

machines

I The construction creates a machine that runs in

time O(T (2n)
3
)

I Glass half full: More time will always allow us

to solve more more problems

I Glass half empty: Certain problems can’t be

solved within a certain amount of time

P ✓ TIME(2n) ( TIME((22n)3) ✓ EXP
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