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Countability and Diagonalization

I We will show that some infinite sets are
“bigger” than others

I We will show that there are strictly more
languages than there are Turing machines

I This will imply that there is not a Turing
machine for every language
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Bijection

Let S1 and S2 be sets. A bijection between S1 and
S2 is a one-to-one correspondence between their
elements
I Surjective: Every element from S2 is mapped

to at least once
I Injective: Every element of S1 maps to exactly

one element of S2
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Bijection
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Bijection Example

I Let N = {0, 1, 2, . . . } (natural numbers)
I Let S = {n2|n 2 N} = {0, 1, 4, 9, 16, . . . }

(square integers)
I Note that S ( N. And yet...
I ...there exists a bijection between N and S

I 0 7! 0
I 1 7! 1
I 2 7! 4
I 3 7! 9
I . . .
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Countable Sets

I Axiom: The natural numbers
N = {0, 1, 2, . . . } are countable

I A set S is countably infinite if there exists a
bijection N 7! S

I Can also think of it as follows: can we write a
program to print out the elements of S one by
one, such that every element eventually gets
printed if we let the program run long enough?
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Countability of Square Numbers

I Proposition: The set of squares
S = {0, 1, 4, 9, 16, . . . } is countably infinite

I Proof: There exists a bijection N 7! S
I n 7! n2

I Alternate interpretation: We can write a
program that prints out n2 for n = 0, 1, 2, . . .
I Given enough time, every square number will

(eventually) be printed
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Countability of Z

Let’s prove that the set of integers
Z = {. . . ,�3,�2,�1, 0, 1, 2, 3, . . . } is countably
infinite
I 0 7! 0
I 1 7! 1, 2 7! �1
I 3 7! 2, 4 7! �2
I 5 7! 3, 6 7! �3
I . . .
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Countability of N2

Let’s prove that the following set is countably
infinite

N2 = {(x , y)|x , y 2 N}
i.e. every combination of 2 natural numbers

I Go through all combinations that add up to 0
I 0 7! (0, 0)

I Go through all combinations that add up to 1
I 1 7! (1, 0)
I 2 7! (0, 1)

I Go through all combinations that add up to 2
I 3 7! (2, 0)
I 4 7! (1, 1)
I 5 7! (0, 2)
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Countability of N2: dovetailing
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Countability of Q
Theorem: The rational numbers are countable

Q = {a/b| a, b 2 N, b 6= 0}
Hint: Go through all possible numbers that the
numerator and denominator can add up to

I 0 7! 0
I numerator and denominator add up to 2

I 1 7! 1/1

I numerator and denominator add up to 3

I 2 7! 2/1
I 3 7! 1/2

I numerator and denominator add up to 4

I 4 7! 3/1
I 5 7! 1/3

I . . .
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Countability of Q: dovetailing
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Countability of Finite Binary Strings

Proposition: The set of all possible finite binary
strings is countable
I List all possible strings of length 1

I 0 7! 0
I 1 7! 1

I List all possible strings of length 2
I 3 7! 00
I 4 7! 01
I 5 7! 10
I 6 7! 11

I List all possible strings of length 3
I . . .
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Countability of Java Programs

Proposition: The set of all possible java programs
is countable
I List all possible programs with 0 characters
I List all possible programs with 1 character
I List all possible programs with 2 characters
I . . .
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Countability of Turing Machines

Proposition: The set of all possible Turing
machines on the alphabet {0, 1} is countable
I List all possible TMs with 1 state
I List all possible TMs with 2 states
I List all possible TMs with 3 states
I . . .
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Uncountability of R

Theorem: The real numbers R are uncountable
I Proof Idea: Assume for sake of contradiction

that R is countable, and construct a
paradoxical number r ⇤

I Technique diagonalization
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Uncountability of R

I AFSOC R is countable. Then there exists a
bijection 0 7! r0, 1 7! r1, . . .

I Create a real number r ⇤

I The i-th digit of r ⇤ is di↵erent from the i-th digit
of ri (diagonalization)

I r ⇤ disagrees with every single ri in the bijection

I Case 1: If r ⇤ was listed at index i , then it
disagrees with itself at the i-th digit

I Case 2: If r ⇤ isn’t part of the list, then our
bijection is not valid
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Diagonalization of R
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Uncountability of infinite binary strings

Proposition: The set of infinite binary strings is
uncountable
I Hint: proceed by contradiction
I construct a binary string that causes problems
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Uncountability of Binary Strings

I AFSOC the inifinite binary strings are
countable. Then there is a bijection with N

I Create an infinite binary string s⇤ that
disagrees with every string in the bijection
I The i-th bit of s⇤ is di↵erent from the i-th bit of si

(diagonalization)

I Case 1: If s⇤ was listed at index i , then it
disagrees with itself at the i-th digit

I Case 2: If s⇤ isn’t part of the list, then our
bijection is not valid
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Diagonalization of Infinite Binary Strings
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Uncountability of Formal Languages
I Proposition: The set of formal languages on

any finite alphabet is uncountable
I Proof: We can draw a bijection between

infinite binary strings and formal languages
I Let ⌃⇤ = {w1,w2, . . . } be the set of all

possible stirngs
I Represent a language Lj ✓ ⌃⇤ using it’s

characteristic binary string Sj
I The i-th digit of Sj s 1 if wi 2 Lj and 0 otherwise

I The set of formal languages has a bijection
with an uncountable set; thus it must be
uncountable
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Existence of Unrecognizable Languages

Corollary: There exist unrecognizable languages
I The set of Turing machines is countable
I The set of languages is uncountable
I So there cannot possibly be a Turing machine

to recognize every language
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