Theory of Computation Countability and Diagonalization

Arjun Chandrasekhar

Countability and Diagonalization

- We will show that some infinite sets are "bigger" than others
- We will show that there are strictly more languages than there are Turing machines
- This will imply that there is not a Turing machine for every language

Bijection

Let S_1 and S_2 be sets. A **bijection** between S_1 and S_2 is a one-to-one correspondence between their elements

- Surjective: Every element from S₂ is mapped to at least once
- Injective: Every element of S₁ maps to exactly one element of S₂

Bijection

Injection (One-to-One)

Surjection (Onto)

Bijection (One-to-One and Onto)

Bijection Example

- Let $\mathbb{N} = \{0, 1, 2, \dots\}$ (natural numbers)
- Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...
- ...there exists a bijection between \mathbb{N} and S
 - $\blacktriangleright \quad 0 \mapsto 0$
 - $1 \mapsto 1$
 - $\blacktriangleright 2 \mapsto 4$
 - 3 → 9
 ...

Countable Sets

- Axiom: The natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$ are countable
- A set S is countably infinite if there exists a bijection N → S
- Can also think of it as follows: can we write a program to print out the elements of S one by one, such that every element eventually gets printed if we let the program run long enough?

Countability of Square Numbers

- Proposition: The set of squares S = {0, 1, 4, 9, 16, ...} is countably infinite
 Proof: There exists a bijection N → S
 n → n²
- Alternate interpretation: We can write a program that prints out n² for n = 0, 1, 2, ...
 - Given enough time, every square number will (eventually) be printed

Countability of $\ensuremath{\mathbb{Z}}$

Let's prove that the set of integers $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ is countably infinite

0 → 0
1 → 1, 2 → -1
3 → 2, 4 → -2
5 → 3, 6 → -3
...

Countability of \mathbb{N}^2

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}$$

i.e. every combination of 2 natural numbers

Go through all combinations that add up to 0
0 → (0,0)
Go through all combinations that add up to 1
1 → (1,0)
2 → (0,1)
Go through all combinations that add up to 2
3 → (2,0)
4 → (1,1)
5 → (0,2)

Countability of \mathbb{N}^2 : dovetailing

New "set" of combinations that add up to a common sum total

Countability of \mathbb{Q}

Theorem: The rational numbers are countable

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b
eq 0 \}$$

Hint: Go through all possible numbers that the numerator and denominator can add up to

Countability of \mathbb{Q}

Theorem: The rational numbers are countable

$$\mathbb{Q} = \{ \left. a / b
ight| a, b \in \mathbb{N}, b
eq 0 \}$$

 $\blacktriangleright 0 \mapsto 0$ numerator and denominator add up to 2 \blacktriangleright 1 \mapsto ¹/₁ numerator and denominator add up to 3 \blacktriangleright 2 \mapsto $^{2}/_{1}$ ▶ $3 \mapsto \frac{1}{2}$ numerator and denominator add up to 4 \blacktriangleright 4 \mapsto 3/1▶ $5 \mapsto \frac{1}{3}$

Countability of \mathbb{Q} : dovetailing

New "set" of combinations that add up to a common sum total

Skip over redundant combinations

 $12 \, / \, 23$

Countability of Finite Binary Strings

Proposition: The set of all possible <u>finite</u> binary strings is countable

- List all possible strings of length 1
 - ► $0 \mapsto 0$
 - ▶ $1 \mapsto 1$
- List all possible strings of length 2
 - ▶ 3 → 00
 - ► $4 \mapsto 01$
 - ► $5 \mapsto 10$
 - ▶ 6 → 11

...

List all possible strings of length 3

Countability of Java Programs

• • • •

Proposition: The set of all possible java programs is countable

- List all possible programs with 0 characters
- List all possible programs with 1 character
- List all possible programs with 2 characters

Countability of Turing Machines

Proposition: The set of all possible Turing machines on the alphabet $\{0, 1\}$ is countable

- List all possible TMs with 1 state
- List all possible TMs with 2 states
- List all possible TMs with 3 states

15

...

Uncountability of $\mathbb R$

Theorem: The real numbers \mathbb{R} are uncountable

► Proof Idea: Assume for sake of contradiction that ℝ is countable, and construct a paradoxical number r*

16

Technique diagonalization

Uncountability of $\mathbb R$

- AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \ldots$
- Create a real number r*
 - The i-th digit of r* is different from the i-th digit of r_i (diagonalization)
 - r^* disagrees with every single r_i in the bijection

Uncountability of $\mathbb R$

- AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \ldots$
- Create a real number r*
 - The i-th digit of r* is different from the i-th digit of r_i (diagonalization)
 - r^* disagrees with every single r_i in the bijection
 - Case 1: If r* was listed at index i, then it disagrees with itself at the i-th digit
 - Case 2: If r* isn't part of the list, then our bijection is not valid

Diagonalization of ${\mathbb R}$

Construct **r**^{*} by modifying the **diagonals digits** until we reach a **contradiction**

 $18 \, / \, 23$

Uncountability of infinite binary strings

Proposition: The set of <u>infinite</u> binary strings is uncountable

- Hint: proceed by contradiction
- construct a binary string that causes problems

Uncountability of Binary Strings

- ► AFSOC the inifinite binary strings are countable. Then there is a bijection with N
- Create an infinite binary string s^{*} that disagrees with every string in the bijection
 - The i-th bit of s* is different from the i-th bit of s_i (diagonalization)
- Case 1: If s* was listed at index i, then it disagrees with itself at the i-th digit
- Case 2: If s* isn't part of the list, then our bijection is not valid

Diagonalization of Infinite Binary Strings

The assumption that the infinite binary strings are countable allows us to list out all of the infinite binary strings (and then construct a paradoxical binary string)

Construct s^{*} by modifying the **diagonals bits** until we reach a **contradiction**

Uncountability of Formal Languages

- Proposition: The set of formal languages on any finite alphabet is uncountable
- Proof: We can draw a bijection between infinite binary strings and formal languages
- Let Σ* = {w₁, w₂,...} be the set of all possible stirngs
- ► Represent a language $L_j \subseteq \Sigma^*$ using it's characteristic binary string S_j

• The i-th digit of S_j s 1 if $w_i \in L_j$ and 0 otherwise

The set of formal languages has a bijection with an uncountable set; thus it must be uncountable

Uncountability of Formal Languages

We can represent every language using an infinite binary string

Existence of Unrecognizable Languages

Corollary: There exist unrecognizable languages

- The set of Turing machines is countable
- The set of languages is uncountable
- So there cannot possibly be a Turing machine to recognize every language