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Computable Function

» So far we have considered machines that take
in an input string and output ACCEPT or
REJECT

» We can also construct machines that take an
input and produce an output

» Let f:X* — X" be a function that takes a
string as input and produces another string as
output

» We say f is a computable function if some
Turing machine M computes f

» For every input w, M halts and leaves f(w) on the
tape, nothing else
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» Let A, B C L* be formal languages
» Suppose f : ¥ — X" is a computable function,
and we A& f(w) e B

» We say A is mapping reducible to B

» We denote this A <), B
» We say f is a reduction from A to B
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Mapping vs. Turing Reducibility

Turing Reducibility:

» A<: B

» M, can call Mg as a subroutine any number of

times

» My can call Mg at any point in its computation
Mapping Reducibility

>» A<y B

» M, can use Mg as a subroutine exactly once

» M, can only call Mg at the very last step in
the computation
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Non-Mapping Reductions

A, = {<M, w> | M accepts w}
HALT = {<M, w> | M halts on w}
P —

IVIA
Rejec
no
Run M and
es
Y see if it
accepts w

no

yes

Reject

Accept

M,, subroutine is used prior to the last step
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Non-Mapping Reductions

A, = {<M, w>| M accepts w}
E = {<M> | L(M) = 2}

D
M
Create machine P: *
<M, w>| 1. Take input s Use M_ to
—» 2 Ifs#w,reject —¥ checkif
3. fs=w,runM L(P)=o
onw

“Yes maps to No”
“No maps to Yes”
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Non-Mapping Reductions

<M1, M2>

EQ,, = {<M,, M_>| L(M,) = L(M,)}
SUB,, = {<M,, M,> | L(M,) & L(M,)}

M

S

D

, . .
Use M to check if |
L(M,) € L(M,)

Use M t; check if
L(M,) € L(M,)

J/

no

Reject

Yyes

no

Accept

Reject

MS subroutine is used more than once
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HALT <p Arm

HALT = {<M, w> | M halts on w}
A, = {<M, w> | M accepts w}

MH
M
A Reject
Creat hine P * Y
reate machine P:

<M. W4 Take input s Use M, to yes
—_— 5 RunMons —» check if P Accept

3. If M halts, accept accepts w

Reduction: f(<M, w>) » <P, w>
<M, w> € HALT & f(<M, w>) € A
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Arv <m EQrm

A, ={<M, w>| M accepts w}
EQ,, ={<M,, M,> | L(M,) = L(M,)}

D

MEQ

Reject
Create machine M, v noi
<M, w>||1. Take input s Use M, to Ves
—» 2. Ifs=w,accept r—|checkif ‘ Accept

3. Ifs#w,runMon L(M) =L(M,)
s

Reduction: f(<M, w>) = <M, M,>
<M, w> € A & f(<M, w>) € EQ,,,
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Arv <m EQrm

_ Ay ={<M, w> | M accepts w}
EQ,, ={<M,, M>|L(M,) # L(M,)}

D

Reject
Create machine M., v ”Oi
<M, w>||1. Take input s Use M to ves
—»2. Ifs=w, reject —» check if - Accept

3. Ifs#w, run Mon L(M) # L(M,)
s

Reduction: f(<M, w>) - <M, M_,>
<M, w> € A & f(<M,w>) € EQ,,,
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Mapping Reducibility
Theorem: If A <, B and B is decidable, then A is
decidable.
» There is a computable function f : 2% — X*
such that w e A& f(w) € B
» There is a machine Mg that decides B
» Construct a machine M, to decide A

1. My, takes w as input

2. Compute f(w
3. Run Mg on f(w)

3.1 If Mg accepts f(w), then Ma accepts w
3.2 Otherwise M4 rejects w

» My accepts w < Mg accepts f(w) < f(w) €
BsweA

» f is computable, and Mg is a decider, so M,
will always halt. Thus, M4 decides A 14/21
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Mapping Reducibility
Theorem: If A <;, B and B is recognizable, then
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» Let Mg recognize B

» Let f be the reduction from A to B
» My, recognizes A as follows:

1. My takes input w

2. Compute f(w
3. Run Mg on f(w)

3.1 If Mg accepts f(w), Ma accepts w
3.2 If Mg does not accept f(w), Ma will not accept w

» My accepts w < Mg accepts f(w) < f(w) €
BeweA
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Theorem: If A<y B then A<y B

» There is a computable function f such that
weAsS f(w)eB
>» w¢ Asf(w) ¢ B
» wcAef(w)EB
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EQrm

Theorem: EQry is neither recognizable nor
co-recognizable
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