Theory of Computation Mapping Reducibility

Arjun Chandrasekhar

When we defined 'reducibility', we gave an informal definition

- When we defined 'reducibility', we gave an informal definition
- We will give a mathematically precise definition of what it means for one problem to be reducible to another

 So far we have considered machines that take in an input string and output ACCEPT or REJECT

- So far we have considered machines that take in an input string and output ACCEPT or REJECT
- We can also construct machines that take an input and produce an output

- So far we have considered machines that take in an input string and output ACCEPT or REJECT
- We can also construct machines that take an input and produce an output
- Let f : Σ^{*} → Σ^{*} be a function that takes a string as input and produces another string as output

- So far we have considered machines that take in an input string and output ACCEPT or REJECT
- We can also construct machines that take an input and produce an output
- Let f : Σ^{*} → Σ^{*} be a function that takes a string as input and produces another string as output
- We say f is a computable function if some Turing machine M computes f

- So far we have considered machines that take in an input string and output ACCEPT or REJECT
- We can also construct machines that take an input and produce an output
- Let f : Σ^{*} → Σ^{*} be a function that takes a string as input and produces another string as output
- We say f is a computable function if some Turing machine M computes f
 - For every input w, M halts and leaves f(w) on the tape, nothing else

4 / 21

• Let $A, B \subseteq \Sigma^*$ be formal languages

• Let $A, B \subseteq \Sigma^*$ be formal languages

Suppose $f : \Sigma^* \to \Sigma^*$ is a computable function, and $w \in A \Leftrightarrow f(w) \in B$

- Let $A, B \subseteq \Sigma^*$ be formal languages
- Suppose $f : \Sigma^* \to \Sigma^*$ is a computable function, and $w \in A \Leftrightarrow f(w) \in B$
- We say A is mapping reducible to B

- Let $A, B \subseteq \Sigma^*$ be formal languages
- Suppose $f : \Sigma^* \to \Sigma^*$ is a computable function, and $w \in A \Leftrightarrow f(w) \in B$
- We say A is mapping reducible to B

• We denote this $A \leq_M B$

- Let $A, B \subseteq \Sigma^*$ be formal languages
- Suppose $f : \Sigma^* \to \Sigma^*$ is a computable function, and $w \in A \Leftrightarrow f(w) \in B$
- We say A is **mapping reducible** to B
 - We denote this $A \leq_M B$
 - We say f is a **reduction** from A to B

Mapping Reducibility "YES maps to YES"

"NO maps to NO"

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times
- M_A can call M_B at any point in its computation

Turing Reducibility:

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times

• M_A can call M_B at any point in its computation Mapping Reducibility

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times
- M_A can call M_B at any point in its computation Mapping Reducibility

►
$$A \leq_M B$$

Turing Reducibility:

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times
- M_A can call M_B at any point in its computation Mapping Reducibility

►
$$A \leq_M B$$

• M_A can use M_B as a subroutine exactly once

6

Turing Reducibility:

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times
- M_A can call M_B at any point in its computation Mapping Reducibility
 - ► $A \leq_M B$
 - M_A can use M_B as a subroutine exactly once
 - *M_A* can only call *M_B* at the very last step in the computation

6

Non-Mapping Reductions

 $\rm M_{\rm H}$ subroutine is used prior to the last step

Non-Mapping Reductions

"Yes maps to No" "No maps to Yes"

Non-Mapping Reductions

M_s subroutine is used more than once

 $HALT \leq_{M} A_{TM}$

HALT = {<M, w> | M halts on w} A_{TM} = {<M, w> | M accepts w}

Reduction: $f(<M, w>) \mapsto <P, w>$ <M, w> ∈ HALT ⇔ $f(<M, w>) ∈ A_{TM}$

 $A_{TM} \leq_{\mathcal{M}} EQ_{TM}$

$$\begin{array}{l} \mathsf{A}_{\mathsf{TM}} = \{ <\mathsf{M}, \, \mathsf{w} > \mid \mathsf{M} \text{ accepts } \mathsf{w} \} \\ \mathsf{EQ}_{\mathsf{TM}} = \{ <\mathsf{M}_1, \, \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) = \mathsf{L}(\mathsf{M}_2) \} \end{array}$$

Reduction: $f(<M, w>) \mapsto <M, M_2>$ <M, w> ∈ A_{TM} ⇔ $f(<M, w>) ∈ EQ_{TM}$

 $A_{TM} \leq_{\mathcal{M}} \overline{EQ_{TM}}$

$$\begin{array}{l} \mathsf{A}_{\mathsf{TM}} = \{ <\mathsf{M}, \, \mathsf{w} > \mid \mathsf{M} \text{ accepts } \mathsf{w} \} \\ \overline{\mathsf{E}} \overline{\mathsf{Q}}_{\mathsf{TM}} = \{ <\mathsf{M}_1, \, \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) \neq \mathsf{L}(\mathsf{M}_2) \} \end{array}$$

Reduction: $f(<M, w>) \mapsto <M, M_2>$ <M, w> ∈ A_{TM} ⇔ $f(<M, w>) ∈ \overline{EQ}_{TM}$

 $12 \, / \, 21$

Theorem: The following four statements are true:

Theorem: The following four statements are true: 1. If $A \leq_M B$ and B is decidable, then A is decidable

Theorem: The following four statements are true:

- 1. If $A \leq_M B$ and B is decidable, then A is decidable
- 2. If $A \leq_M B$ and B is recognizable, then A is recognizable

$$13 \, / \, 21$$

Theorem: The following four statements are true:

- 1. If $A \leq_M B$ and B is decidable, then A is decidable
- 2. If $A \leq_M B$ and B is recognizable, then A is recognizable
- 3. If $A \leq_M B$ and A is undecidable, then B is undecidable
Theorem: The following four statements are true:

- 1. If $A \leq_M B$ and B is decidable, then A is decidable
- 2. If $A \leq_M B$ and B is recognizable, then A is recognizable
- 3. If $A \leq_M B$ and A is undecidable, then B is undecidable
- 4. If $A \leq_M B$ and A is unrecognizable, then B is unrecognizable

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A

$$14 \, / \, 21$$

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A

1. M_A takes w as input

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable

- There is a computable function $f: \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$
- There is a machine M_B that decides B
- \blacktriangleright Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)3. Run M_B on f(w)

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), then M_A accepts w

$$14 \, / \, 21$$

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), then M_A accepts w
 - 3.2 Otherwise M_A rejects w

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), then M_A accepts w
 - 3.2 Otherwise M_A rejects w
- *M_A* accepts *w* ⇔ *M_B* accepts *f*(*w*) ⇔ *f*(*w*) ∈
 B ⇔ *w* ∈ *A*

 $14 \, / \, 21$

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), then M_A accepts w
 - 3.2 Otherwise M_A rejects w
- M_A accepts $w \Leftrightarrow M_B$ accepts $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$
- f is computable, and M_B is a decider, so M_A
 will always halt. Thus, M_A decides A
 14 / 22

Theorem: If $A \leq_M B$ and B is recognizable, then A is recognizable

- Let M_B recognize B
- Let *f* be the reduction from *A* to *B*
- M_A recognizes A as follows:
 - 1. M_A takes input w
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), M_A accepts w
 - 3.2 If M_B does not accept f(w), M_A will not accept w

$15 \, / \, 21$

Theorem: If $A \leq_M B$ and B is recognizable, then A is recognizable

- Let M_B recognize B
- Let f be the reduction from A to B
- M_A recognizes A as follows:
 - 1. M_A takes input w
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), M_A accepts w
 - 3.2 If M_B does not accept f(w), M_A will not accept w
- *M_A* accepts *w* ⇔ *M_B* accepts *f*(*w*) ⇔ *f*(*w*) ∈
 B ⇔ *w* ∈ *A*

15 / 21

Theorem: If $A \leq_M B$ and B is recognizable, then A is recognizable

- Let M_B recognize B
- Let *f* be the reduction from *A* to *B*
- M_A recognizes A as follows:
 - 1. M_A takes input w
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), M_A accepts w
 - 3.2 If M_B does not accept f(w), M_A will not accept w

15

- M_A accepts $w \Leftrightarrow M_B$ accepts $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$
- Thus M_A recognizes A

Theorem: If $A \leq_M B$ and A is undecidable then B is undecidable

Theorem: If $A \leq_M B$ and A is undecidable then B is undecidable

► AFSOC *B* is decidable

Theorem: If $A \leq_M B$ and A is undecidable then B is undecidable

16 /

21

- ► AFSOC *B* is decidable
- Then A is decidable

Theorem: If $A \leq_M B$ and A is undecidable then B is undecidable

- ► AFSOC *B* is decidable
- Then A is decidable
- But A is undecidable! This is a contradiction, and we conclude that B is not decidable.

16

Theorem: If $A \leq_M B$ and A is unrecognizable then B is unrecognizable

$17 \, / \, 21$

Theorem: If $A \leq_M B$ and A is unrecognizable then B is unrecognizable

► AFSOC *B* is recognizable

Theorem: If $A \leq_M B$ and A is unrecognizable then B is unrecognizable

17

- ► AFSOC *B* is recognizable
- ► Then A is recognizable

Theorem: If $A \leq_M B$ and A is unrecognizable then B is unrecognizable

- ► AFSOC *B* is recognizable
- ► Then A is recognizable
- But A is unrecognizable! This is a contradiction, and we conclude that B is not recognizable.

17 / 21

Theorem: If $A \leq_M B$ then $\overline{A} \leq_M \overline{B}$

18/21

Theorem: If $A \leq_M B$ then $\overline{A} \leq_M \overline{B}$

There is a computable function f such that w ∈ A ⇔ f(w) ∈ B

Theorem: If $A \leq_M B$ then $\overline{A} \leq_M \overline{B}$

There is a computable function f such that w ∈ A ⇔ f(w) ∈ B
w ∉ A ⇔ f(w) ∉ B

Theorem: If $A \leq_M B$ then $\overline{A} \leq_M \overline{B}$

There is a computable function f such that w ∈ A ⇔ f(w) ∈ B
w ∉ A ⇔ f(w) ∉ B
w ∈ Ā ⇔ f(w) ∈ B

18 /

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is neither recognizable nor co-recognizable

20 / 21

▶ $A_{TM} \leq_M \overline{EQ_{TM}}$, therefore $\overline{A_{TM}} \leq_M EQ_{TM}$

A_{TM} ≤_M EQ_{TM}, therefore A_{TM} ≤_M EQ_{TM}
 A_{TM} is not recognizable

- ▶ $A_{TM} \leq_M \overline{EQ_{TM}}$, therefore $\overline{A_{TM}} \leq_M EQ_{TM}$
- \blacktriangleright $\overline{A_{TM}}$ is not recognizable
- Therefore EQ_{TM} is not recognizable

$\overline{\mathrm{E}\mathrm{Q}_{\mathrm{TM}}}$ is not recognizable

21/21

$\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not recognizable

▶ $A_{TM} \leq_{M} EQ_{TM}$, therefore $\overline{A_{TM}} \leq_{M} \overline{EQ_{TM}}$

$\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not recognizable

A_{TM} ≤_M EQ_{TM}, therefore A_{TM} ≤_M EQ_{TM} A_{TM} is not recognizable

$\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not recognizable

▶ $A_{TM} \leq_M EQ_{TM}$, therefore $\overline{A_{TM}} \leq_M \overline{EQ_{TM}}$

21 /

- \blacktriangleright $\overline{A_{TM}}$ is not recognizable
- Therefore $\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not recognizable