Nondeterministic Finite Automata

Arjun Chandrasekhar

1/41



Nondeterministic Finite Automata

2 /41



Nondeterministic Finite Automata

» A DFA is deterministic. For each state/symbol

combination, there is exactly one transition
defined.

2 /41



Nondeterministic Finite Automata

» A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

» An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol

pair may have any number of transitions
defined for it (0, 1, 2, ...).

2 /41



Nondeterministic Finite Automata

» A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

» An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol
pair may have any number of transitions
defined for it (0, 1, 2, ...).

» Can also have € transitions which let you
change states without reading a symbol.

2 /41



Nondeterministic Finite Automata

1

0

3/41



Nondeterministic Finite Automata

Can only read Os here

0 1

3/41



Nondeterministic Finite Automata

Can only read Os here

0 1

Can only read 1s here

3/41



Nondeterministic Finite Automata

0,1 0,1

OEROSNOREO
0 1
&)

4 /41




Nondeterministic Finite Automata

Multiple transitions for
the same symbol

0,1 0,1

ot <>—C—3 1
0 1
&)

4/41




Nondeterministic Finite Automata

Multiple transitions for
the same symbol

0,1

1

Could make this transition with
or without reading a symbol

4 /41



Computation on an NFA

5/41



Computation on an NFA

» Start in the start state

5 /41



Computation on an NFA

» Start in the start state
» Scan symbols one-by-one

5 /41



Computation on an NFA

» Start in the start state

» Scan symbols one-by-one
» For each symbol o scanned:

5 /41



Computation on an NFA

» Start in the start state

» Scan symbols one-by-one
» For each symbol o scanned:
» Go to one of the possible arrows with the label o

5 /41



Computation on an NFA

» Start in the start state

» Scan symbols one-by-one
» For each symbol o scanned:

» Go to one of the possible arrows with the label o
» If no arrows have the label o the computation dies

5 /41



Computation on an NFA

» Start in the start state

» Scan symbols one-by-one
» For each symbol o scanned:

» Go to one of the possible arrows with the label o

» If no arrows have the label o the computation dies

» The NFA can behave in different ways on the same
input string!

5 /41



Computation on an NFA

» Start in the start state

» Scan symbols one-by-one

» For each symbol o scanned:
» Go to one of the possible arrows with the label o
» If no arrows have the label o the computation dies
» The NFA can behave in different ways on the same

input string!
» At any point the NFA may take an € transition
without consuming a character

5 /41



Computation on an NFA

» Start in the start state

Scan symbols one-by-one
For each symbol ¢ scanned:
» Go to one of the possible arrows with the label o
» If no arrows have the label o the computation dies
» The NFA can behave in different ways on the same
input string!

>
>

» At any point the NFA may take an € transition
without consuming a character

» The NFA accepts if after reading all the
characters, and taking any desired € transitions,
it is in an accept state

5 /41



Computation on an NFA
What happens on inputs: 000, 010, 101, 0117
0 1

()
—{ Qo 01

6 /41



Computation on an NFA
What happens on inputs: 000, 010, 101, 0117
0 1

()
—{ Qo 01

qG > g0 > qo > go — REJECT

6 /41



Computation on an NFA
What happens on inputs: 000, 010, 101, 0117
0 1

()
—{ Qo 01

qG > g0 > qo > go — REJECT

quqoﬁqlngES

6 /41



Computation on an NFA
What happens on inputs: 000, 010, 101, 0117
0 1

()
—{ Qo 01

qG > g0 > qo > go — REJECT

quqoﬁqlngES

g0 = g1 > DIES

6 /41



Computation on an NFA
What happens on inputs: 000, 010, 101, 0117
0 1

()
—{ Qo 01

qG > g0 > qo > go — REJECT

a0 i) q0 i) a1 i) DlES
1 0
do — q1 — DIES

qo 1) Qo i) q1 i) q — ACCEPT
6 /41



Computation on an NFA
What happens on input 1117
0,1

7/41



Computation on an NFA
What happens on input 1117
0,1 0,1

1 60 /7N 1 Q
— aq1 Q2 as
@ \/

QG = g0 = g0 = qo — REJECT

7/41



Computation on an NFA
What happens on input 1117
0,1 0,1

1 60 /7N 1 Q
— aq1 Q2 as
@ \/

QG = g0 = g0 = qo — REJECT

q = q1 — DIES

7/41



Computation on an NFA
What happens on input 1117
0,1 0,1

1 60 /7N 1 Q
— aq1 Q2 as
@ \/

QG = g0 = g0 = qo — REJECT

Go — g1 — DIES
a5 a0 S g0 5 g1 g — REJECT

7/41



Computation on an NFA
What happens on input 1117
0,1 0,1

1 60 /7N 1 Q
— aq1 Q2 as
@ \/

QG = g0 = g0 = qo — REJECT

Go — g1 — DIES
a5 a0 S g0 5 g1 g — REJECT

Go = @1 > @ = gz — g3 — ACCEPT 7 /4]



NFA Formal Definition

8 /41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)

8 /41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA

8 /41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA

» Y the alphabet of (non-€) characters that the
NFA can read

8 /41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA

» Y the alphabet of (non-€) characters that the
NFA can read

» g.: the starting state

8 /41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA

» Y the alphabet of (non-€) characters that the
NFA can read

> g.: the starting state
> §:Q x (XU {e}) = P(Q) - the transition
function

8 /41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA
» Y the alphabet of (non-€) characters that the
NFA can read
» g.: the starting state
> 0:Q x (XU{e}) = P(Q) - the transition
function
» Input: Current state & next symbol (or €)

8 /41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA
» Y the alphabet of (non-€) characters that the
NFA can read
> g.: the starting state
> §:Q x (XU {e}) = P(Q) - the transition
function

» Input: Current state & next symbol (or €)
» Output: Set of possible next states (could be

empty)

8 /41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA

» Y the alphabet of (non-€) characters that the
NFA can read

> g.: the starting state
> §:Q x (XU {e}) = P(Q) - the transition
function

» Input: Current state & next symbol (or €)
» Output: Set of possible next states (could be

empty)
» F - the set of accept states

8 /41



NFA Accepting Computation

9/41



NFA Accepting Computation

» An NFA can do many different things on the
same string

9/41



NFA Accepting Computation

» An NFA can do many different things on the
same string

» It may be capable of both accepting and rejecting
the same string!

9/41



NFA Accepting Computation

» An NFA can do many different things on the
same string

» It may be capable of both accepting and rejecting
the same string!

» What does it mean for an NFA to accept a
string?

9 /41



NFA Accepting Computation

» An NFA can do many different things on the
same string

» It may be capable of both accepting and rejecting
the same string!
» What does it mean for an NFA to accept a
string?
» Informally, an NFA accepts a string w if there

exists a computation path that ends in an
accept state

9 /41



NFA Accepting Computation

» An NFA can do many different things on the
same string

» It may be capable of both accepting and rejecting
the same string!
» What does it mean for an NFA to accept a
string?
» Informally, an NFA accepts a string w if there

exists a computation path that ends in an
accept state

» Even if every other path rejects and/or dies, just
one accepting path is good enough

9/41



NFA Accepting Computation

10 / 41



NFA Accepting Computation

An NFA accepts a string w = waiws ... w, if:

10 / 41



NFA Accepting Computation

An NFA accepts a string w = waiws ... w, if:

1. We can re-write w as y = y1¥» ...y, where
each y; € (X Ue) (i.e. insert empty ¢
characters into w) and ...

10/ 41



NFA Accepting Computation

An NFA accepts a string w = waiws ... w, if:

1. We can re-write w as y = y1¥» ...y, where
each y; € (X Ue) (i.e. insert empty ¢
characters into w) and ...

2. There exists a sequence of states qoq: ... g,
such that...

10/ 41



NFA Accepting Computation

An NFA accepts a string w = waiws ... w, if:

1. We can re-write w as y = y1¥» ...y, where
each y; € (X Ue) (i.e. insert empty ¢
characters into w) and ...

2. There exists a sequence of states qoq: ... g,
such that...

2.1 qo = gs (start in the start state)

10/ 41



NFA Accepting Computation

An NFA accepts a string w = waiws ... w, if:

1. We can re-write w as y = y1¥» ...y, where
each y; € (X Ue) (i.e. insert empty ¢
characters into w) and ...

2. There exists a sequence of states qoq: ... g,
such that...

2.1 qo = gs (start in the start state)
2.2 q; € 6(qi-1,y;) for all i (all transitions are valid)

10/ 41



NFA Accepting Computation

An NFA accepts a string w = waiws ... w, if:

1. We can re-write w as y = y1¥» ...y, where
each y; € (X Ue) (i.e. insert empty ¢
characters into w) and ...

2. There exists a sequence of states qoq: ... gn
such that...
2.1 qo = gs (start in the start state)
2.2 q; € 6(qgi_1,y;) for all i (all transitions are valid)
2.3 g, € F (end in an accept state)

10/ 41



NFA Accepting Computation

Which strings are accepted by this NFA?

0 1
Gy
A) ¢ (empty string) C) 010
B) 1 D) 101

11/ 41



NFA Accepting Computation

Which strings are accepted by this NFA?

0 1
O
A) ¢ (empty string) C) 010
B)1v D) 101

11/ 41



NFA Accepting Computation

Which strings are accepted by this NFA?

0,1 0,1
€,0
A) € (empty string) C) 111101000
B) 111 D) 0000

12 /41



NFA Accepting Computation

Which strings are accepted by this NFA?

0,1 0,1
6,0
A) ¢ (empty string) C) 111101000 v/
B) 111 v D) 0000

12 /41



NFA Accepting Computation
Which strings are accepted by this NFA?

A) ¢ (empty string) C) cc

B) abba D) cccecceceecece

13 /41



NFA Accepting Computation
Which strings are accepted by this NFA?

A) € (empty string) vV C) cc v

B) abba D) cccecceceecece

13 /41



The Language of an NFA

14 / 41



The Language of an NFA

» Let N be an NFA

14 / 41



The Language of an NFA

» Let N be an NFA

» The language of N is the set of strings that N
accepts i.e.

L(N) = {w|N accepts w}

14 /41



The Language of an NFA

What is the language of this NFA
1

0
OREENO

15 /41



The Language of an NFA

What is the language of this NFA

0 1
OREENO

L(N) = {w | Os precede 1s, at least one 1}

15 /41



The Language of an NFA

What is the language of this NFA
0,1

16 / 41



The Language of an NFA

What is the language of this NFA
0,1 0,1

1 = /\ 1 Q
— 01 ar as
@ N

L(N) = {w | w contains 101 or 11 as a substring}

16 / 41



The Language of an NFA

What is the language of this NFA

17 /41



The Language of an NFA

What is the language of this NFA

L(N) = {w | w has either zero or two a's followed
by any number of b's, OR w = cc}

17 /41



Nondeterminism

18 / 41



Nondeterminism

» As said earlier, an NFA can have many possible
computation paths

18 /41



Nondeterminism

» As said earlier, an NFA can have many possible
computation paths
» We can think of nondeterminism in two ways:

18 /41



Nondeterminism

» As said earlier, an NFA can have many possible
computation paths
» We can think of nondeterminism in two ways:

» The NFA “guesses” which choice will ultimately
lead to an accepting state

18 /41



Nondeterminism

» As said earlier, an NFA can have many possible
computation paths
» We can think of nondeterminism in two ways:

» The NFA “guesses” which choice will ultimately
lead to an accepting state

» The NFA branches/copies itself for each possible
choice.

18 /41



NFAs vs DFAs

19 /41



NFAs vs DFAs

» Are NFAs more powerful than DFAs?

19 /41



NFAs vs DFAs

» Are NFAs more powerful than DFAs?

» That is, are there languages that an NFA can
recognize, but a DFA cannot?

19 /41



NFAs vs DFAs

» Are NFAs more powerful than DFAs?

» That is, are there languages that an NFA can
recognize, but a DFA cannot?

» As it turns out, no! So why study them?

19 /41



NFAs vs DFAs

» Are NFAs more powerful than DFAs?

» That is, are there languages that an NFA can
recognize, but a DFA cannot?

» As it turns out, no! So why study them?

» If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.

19 /41



NFAs vs DFAs

» Are NFAs more powerful than DFAs?
» That is, are there languages that an NFA can
recognize, but a DFA cannot?
» As it turns out, no! So why study them?
» If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.
» If we actually want to be able to recognize the

language, then we can automate the conversion of
an NFA to a DFA.

19 /41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w ends with bba}

20 /41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w ends with bba}

a, b
O O ORRO

20 /41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w ends with bba}

“Guess’ when we've reached the end
a, b

RO RORRORRO.




Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

21 /41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

a, b a, b
O O ORRO

21 /41




Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

“Guess’ where bba occurs
a, b a, b

RO

21 /41




Combining NFAs

22 /41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
with an even number of Os

22 /41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
with an even number of Os

|
0

22 /41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
with an exactly three Os

23 /41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
with an exactly three Os

: : /\ : Q
01 ar as
@ N4

23 /41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
where the number of Os is even or exactly 3

24 / 41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
where the number of Os is even or exactly 3

0

24 / 41



Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
where the number of Os is even or exactly 3




Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
where the number of Os is even or exactly 3




Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
where the number of Os is even or exactly 3

ORC)

0
H@ “Guess’ which machine to use

€
2 N 0 0
qdo aq1 0]
")

24 / 41




Equivalence of NFAs and DFAs

25 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA

25 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
» Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that
recognizes all the same strings

25 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
» Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that

recognizes all the same strings

» Technique: Simulate nondeterminism using
the power set construction

25 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA

» Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that

recognizes all the same strings
» Technique: Simulate nondeterminism using
the power set construction
» Every state in the D will correspond to a subset of
states in N, i.e. set of possible states where N
could be at some point in the computation

25 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA

» Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that

recognizes all the same strings
» Technique: Simulate nondeterminism using
the power set construction
» Every state in the D will correspond to a subset of
states in N, i.e. set of possible states where N
could be at some point in the computation
» Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

25 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA

» Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that

recognizes all the same strings
» Technique: Simulate nondeterminism using
the power set construction
» Every state in the D will correspond to a subset of
states in N, i.e. set of possible states where N
could be at some point in the computation
» Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step
» Accept if the NFA could be in an accept state

25 / 41



Equivalence between NFAs and DFAs

26 / 41



Equivalence between NFAs and DFAs

(=) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

26 / 41



Equivalence between NFAs and DFAs

(=) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

» Suppose there is a DFA D that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(=) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

» Suppose there is a DFA D that recognizes L
» Then D is an NFA!

26 / 41



Equivalence between NFAs and DFAs

(=) If a language L is recognized by a DFA, then
there exists an NFA to recognize it
» Suppose there is a DFA D that recognizes L

» Then D is an NFA!

» It's an NFA that simply chooses not to have any
nondeterminism, missing transitions, or € transition

26 / 41



Equivalence between NFAs and DFAs

(=) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

» Suppose there is a DFA D that recognizes L
» Then D is an NFA!

» It's an NFA that simply chooses not to have any
nondeterminism, missing transitions, or € transition

» Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L

» For now, assume N has no € transitions

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it
» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L
» For now, assume N has no ¢ transitions

» We will construct a DFA
D= (Qp,X,qs,,p, Fp) to recognize L

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L
» For now, assume N has no € transitions

» We will construct a DFA
D= (Qp,X,qs,,p, Fp) to recognize L

> Qp =P(Qn)

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L

» For now, assume N has no ¢ transitions
» We will construct a DFA
D= (Qp,X,qs,,p, Fp) to recognize L
> Qp ="P(Qn)
> (SD(R,O') = U (SN(f,O')

rer

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L
» For now, assume N has no € transitions

» We will construct a DFA
D= (Qp,X,qs,,p, Fp) to recognize L

> Qb =P(Qn)

> (SD(R,O') = U (SN(f,O')
rer

> qdsp = {qu}

27 /41



Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it
» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L
» For now, assume N has no ¢ transitions

» We will construct a DFA
D= (Qp,X,qs,,p, Fp) to recognize L

> Qp = P(Qn)

> (SD(R,O') = U (SN(f,O')
rer

’ qSD - {qSN}

> Fp={R C Qn|RN Fy # 0} (i.e., all subsets that
include at least one accept state)

27 /41



NFA to DFA conversion

a

Original NFA h

b
DFA States . .

28 / 41



NFA to DFA conversion

Original NFA
start state = q,

.

b

DFA start state =

{9, .

® 6.

28 / 41



NFA to DFA conversion

a

Original NFA a
6(q0’ a) = {qo! q1} b

DFA

5({q,} @) ={d, q,} .

28 / 41



NFA to DFA conversion

a

Original NFA ab
0(q,, b) = {}

b

DFA
0({qg}: b) = {}

28 / 41



NFA to DFA conversion

a

Original NFA h
6(q,, b) ={q,}

b

DFA
0({a,}, b) =1{qq}

28 / 41



NFA to DFA conversion

Original NFA

5(q,, b) = {}
5(q,, b) ={q,}
DFA

0({q,. 9,}, b)
= 0(q,, b) U d(q,, b)

={rU{qy}
={Q}

28 / 41



NFA to DFA conversion

Original NFA
0(qy, @) ={q,, a,}
0(q,, a) = {}

DFA

o({a,, 9.}, @)
=0(q,, @) U d(q,, a)

=10y A U {}
- {qO’ q1}

28 / 41



NFA to DFA conversion

a

Original NFA B

b

DFA with all
transitions




NFA to DFA conversion

Original NFA
F={q,}

DFA

F = anything
containing an
NFA accept state

={{a,}, {a, a1}




NFA to DFA conversion

a

Original NFA h

b

DFA




Epsilon Closure

29 / 41



Epsilon Closure

> Let N =(Q,%,qs, 0, F) be an NFA

29 / 41



Epsilon Closure

> Let N =(Q,%,qs, 0, F) be an NFA
» Let S C Q be a set of states

29 /41



Epsilon Closure

> Let N =(Q,%,qs, 0, F) be an NFA

» Let S C Q be a set of states

» Def: the epsilon closure E(S) is the set of
states that can be reached from S using only €
arrows

29 /41



Epsilon Closure

> Let N =(Q,%,qs, 0, F) be an NFA

» Let S C Q be a set of states

» Def: the epsilon closure E(S) is the set of
states that can be reached from S using only €
arrows

» This includes members of S

29 /41



Epsilon Closure Example

E({a,}) =1{9,. 95, 95}

30 /41



Epsilon Closure Example

E({a,}) ={9,. q,}

30 /41



Epsilon Closure Example

E({q»]a qz}) = {q1! q2! q3s q4}

30 /41



NFA to DFA conversion

How do we extend our conversion to account for e
transitions?

> Q="P(Qn)
» 5D(R,O') = LGJR(SN(I’,O')
> qgs, = {qSN}

> FD:{RQQN‘RHFN#@}

31/41



NFA to DFA conversion

How do we extend our conversion to account for e
transitions?

> Q="P(Qn)
» 5D(R,U) = LEJR(sN(I’,O')
» gs, = {qSN}

> FD:{RQQN‘RQFN#Q)}

31/41



NFA to DFA conversion

How do we extend our conversion to account for e
transitions?

> Q="P(Qn)
> do(R.0) = € (U on(r.0)

rer

> q5D - E({qSN})
> FD:{RQQN‘RHFN#@}

31/41



NFA to DFA Conversion Example

Let's convert the following NFA to a DFA

32 /41



NFA to DFA Conversion Example

32 /41



NFA to DFA Conversion Example

32 /41



NFA to DFA Conversion Example

32 /41



NFA to DFA Conversion Example

32 /41



NFA to DFA Conversion Example

a, b

32 /41



NFA to DFA Conversion Example

a, b

Unreachable states

32 /41



NFAs and regular languages

33 /41



NFAs and regular languages

» Recall that the regular languages are the
languages recognized by DFAs

33 /41



NFAs and regular languages

» Recall that the regular languages are the
languages recognized by DFAs

» We have proven that DFAs and NFAs are
equivalent

33 /41



NFAs and regular languages

33 /41



NFAs and regular languages

» Recall that the regular languages are the
languages recognized by DFAs

» We have proven that DFAs and NFAs are
equivalent

» Corollary: a language is regular if and only if
it is recognized by an NFA

33 /41



NFAs and regular languages

» Recall that the regular languages are the
languages recognized by DFAs

» We have proven that DFAs and NFAs are
equivalent

» Corollary: a language is regular if and only if
it is recognized by an NFA

» It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 /41



Regular operations

34 /41



Regular operations

Recall the regular operations:

34 /41



Regular operations

Recall the regular operations:

» Union:
AUB ={w|w e Aor w € B}

34 /41



Regular operations

Recall the regular operations:

» Union:
AUB ={w|w e Aor w € B}

» Concatenation:
AoB={w=wmw|w, € A, w, € B}

34 /41



Regular operations

Recall the regular operations:

» Union:
AUB ={w|w e Aor w € B}

» Concatenation:
AoB={w=wmw|w, € A, w, € B}
> (Kleene) Star:
A ={et U{w =ww...w,|w; € A}

34 /41



Kleene's Theorem

35 /41



Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

35 /41



Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

35 /41



Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

» With DFAs, it was messy

35 /41



Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

» With DFAs, it was messy
» With NFAs, this will be easy!

35 /41



Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

» With DFAs, it was messy

With NFAs, this will be easy!

Proof idea: We will combine the DFAs for L
and L, into an NFA that simulates the regular
operation.

>
>

35 /41



Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

» With DFAs, it was messy

With NFAs, this will be easy!

>

» Proof idea: We will combine the DFAs for L;
and L, into an NFA that simulates the regular
operation.

» For Kleene star we only modify the DFA for L,

35 /41



Closure under union

36 /41



Closure under union

» Let N recognize L; and let N, recognize L,

36/ 41



Closure under union

» Let N recognize L; and let N, recognize L,
» Start with the two smaller NFAs

36/ 41



Closure under union

» Let N recognize L; and let N, recognize L,
» Start with the two smaller NFAs
» Add a new start state

36/ 41



Closure under union

» Let N recognize L; and let N, recognize L,

» Start with the two smaller NFAs

» Add a new start state

» Add € transitions to the two original start states

36/ 41



Closure under union

NFA for L1

O

NFA for L2

O

“Guess” which
machine to use

e)e

o)e

37 /41



Closure under concatenation

38 /41



Closure under concatenation

» Let N recognize L; and let N, recognize L,

38 /41



Closure under concatenation

» Let N recognize L; and let N, recognize L,
» Start with the two smaller NFAs

38 /41



Closure under concatenation

» Let N recognize L; and let N, recognize L,
» Start with the two smaller NFAs

» Add an ¢ transition between N;'s accept
state(s) and N,'s start state

38 /41



Closure under concatenation

» Let N recognize L; and let N, recognize L,
» Start with the two smaller NFAs

» Add an ¢ transition between N;'s accept
state(s) and N,'s start state

» Accept states in N are no longer accept states
(we have to accept in N\,)

38 /41



Closure under concatenation

NFA for L1 NFA for L2

-~ =0
O
O O -

“Guess” where to
split the input string

39 /41



Closure under Kleene star

40 /41



Closure under Kleene star

» Let N; recognize L

40 / 41



Closure under Kleene star

» Let N; recognize L
» Start with the smaller NFA

40 / 41



Closure under Kleene star

» Let N; recognize L

» Start with the smaller NFA

» Add € transitions from each accept state back
to the start state

40 / 41



Closure under Kleene star

» Let N; recognize L
» Start with the smaller NFA
» Add € transitions from each accept state back

to the start state

» Add an new start state with an € transition to
the original start state

40 / 41



Closure under Kleene star

» Let N; recognize L
» Start with the smaller NFA
» Add € transitions from each accept state back

to the start state

» Add an new start state with an € transition to
the original start state

» This new start state will also be an accept state

40 / 41



Closure under Kleene star

“Guess” where to split
up the input string

€

NFA for L1
£

Special start state for
accepting ¢ (i,e., 0 copies)

41 /41



