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» A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

» An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol
pair may have any number of transitions
defined for it (0, 1, 2, ...).

» Can also have € transitions which let you
change states without reading a symbol.
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Nondeterministic Finite Automata

Multiple transitions for
the same symbol

0,1

1

Could make this transition with
or without reading a symbol
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Computation on an NFA

» Start in the start state

Scan symbols one-by-one
For each symbol ¢ scanned:
» Go to one of the possible arrows with the label o
» If no arrows have the label o the computation dies
» The NFA can behave in different ways on the same
input string!

>
>

» At any point the NFA may take an € transition
without consuming a character

» The NFA accepts if after reading all the
characters, and taking any desired € transitions,
it is in an accept state
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Computation on an NFA
What happens on inputs: 000, 010, 101, 0117
0 1

()
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qG > g0 > qo > go — REJECT

a0 i) q0 i) a1 i) DlES
1 0
do — q1 — DIES

qo 1) Qo i) q1 i) q — ACCEPT
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Computation on an NFA
What happens on input 1117
0,1 0,1

1 60 /7N 1 Q
— aq1 Q2 as
@ \/

QG = g0 = g0 = qo — REJECT

Go — g1 — DIES
a5 a0 S g0 5 g1 g — REJECT

Go = @1 > @ = gz — g3 — ACCEPT 7 /4]
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NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q, X, 4, gs, F)
» (: The set of states in the NFA

» Y the alphabet of (non-€) characters that the
NFA can read

> g.: the starting state
> §:Q x (XU {e}) = P(Q) - the transition
function

» Input: Current state & next symbol (or €)
» Output: Set of possible next states (could be

empty)
» F - the set of accept states
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NFA Accepting Computation

» An NFA can do many different things on the
same string

» It may be capable of both accepting and rejecting
the same string!
» What does it mean for an NFA to accept a
string?
» Informally, an NFA accepts a string w if there

exists a computation path that ends in an
accept state

» Even if every other path rejects and/or dies, just
one accepting path is good enough
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An NFA accepts a string w = waiws ... w, if:

1. We can re-write w as y = y1¥» ...y, where
each y; € (X Ue) (i.e. insert empty ¢
characters into w) and ...

2. There exists a sequence of states qoq: ... gn
such that...
2.1 qo = gs (start in the start state)
2.2 q; € 6(qgi_1,y;) for all i (all transitions are valid)
2.3 g, € F (end in an accept state)
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» Let N be an NFA

» The language of N is the set of strings that N
accepts i.e.

L(N) = {w|N accepts w}
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L(N) = {w | Os precede 1s, at least one 1}
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The Language of an NFA

What is the language of this NFA
0,1 0,1

1 = /\ 1 Q
— 01 ar as
@ N

L(N) = {w | w contains 101 or 11 as a substring}
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The Language of an NFA

What is the language of this NFA

L(N) = {w | w has either zero or two a's followed
by any number of b's, OR w = cc}
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Nondeterminism

» As said earlier, an NFA can have many possible
computation paths
» We can think of nondeterminism in two ways:

» The NFA “guesses” which choice will ultimately
lead to an accepting state

» The NFA branches/copies itself for each possible
choice.

18 /41
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NFAs vs DFAs

» Are NFAs more powerful than DFAs?
» That is, are there languages that an NFA can
recognize, but a DFA cannot?
» As it turns out, no! So why study them?
» If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.
» If we actually want to be able to recognize the

language, then we can automate the conversion of
an NFA to a DFA.
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Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

“Guess’ where bba occurs
a, b a, b

RO
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Combining NFAs

Let ¥ = {0}. Design an NFA to recognize strings
where the number of Os is even or exactly 3

ORC)

0
H@ “Guess’ which machine to use

€
2 N 0 0
qdo aq1 0]
")
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» Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that

recognizes all the same strings
» Technique: Simulate nondeterminism using
the power set construction
» Every state in the D will correspond to a subset of
states in N, i.e. set of possible states where N
could be at some point in the computation
» Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step
» Accept if the NFA could be in an accept state
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Equivalence between NFAs and DFAs

(=) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

» Suppose there is a DFA D that recognizes L
» Then D is an NFA!

» It's an NFA that simply chooses not to have any
nondeterminism, missing transitions, or € transition

» Thus, there exists an NFA that recognizes L
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Equivalence between NFAs and DFAs

(«<=) If a language L is recognized by an NFA, then
there exists a DFA to recognize it
» Suppose there is an NFA
N = (Qn, X, gsy, On, Fn) that recognizes L
» For now, assume N has no ¢ transitions

» We will construct a DFA
D= (Qp,X,qs,,p, Fp) to recognize L

> Qp = P(Qn)

> (SD(R,O') = U (SN(f,O')
rer

’ qSD - {qSN}

> Fp={R C Qn|RN Fy # 0} (i.e., all subsets that
include at least one accept state)
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NFA to DFA conversion
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start state = q,

.

b

DFA start state =

{9, .

® 6.
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NFA to DFA conversion

Original NFA

5(q,, b) = {}
5(q,, b) ={q,}
DFA

0({q,. 9,}, b)
= 0(q,, b) U d(q,, b)

={rU{qy}
={Q}
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NFA to DFA conversion

Original NFA
0(qy, @) ={q,, a,}
0(q,, a) = {}

DFA

o({a,, 9.}, @)
=0(q,, @) U d(q,, a)

=10y A U {}
- {qO’ q1}
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NFA to DFA conversion

a

Original NFA B

b

DFA with all
transitions




NFA to DFA conversion

Original NFA
F={q,}

DFA

F = anything
containing an
NFA accept state

={{a,}, {a, a1}




NFA to DFA conversion

a

Original NFA h

b

DFA
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Epsilon Closure

> Let N =(Q,%,qs, 0, F) be an NFA

» Let S C Q be a set of states

» Def: the epsilon closure E(S) is the set of
states that can be reached from S using only €
arrows

» This includes members of S

29 /41



Epsilon Closure Example

E({a,}) =1{9,. 95, 95}
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Epsilon Closure Example

E({q»]a qz}) = {q1! q2! q3s q4}
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NFA to DFA conversion

How do we extend our conversion to account for e
transitions?

> Q="P(Qn)
» 5D(R,O') = LGJR(SN(I’,O')
> qgs, = {qSN}

> FD:{RQQN‘RHFN#@}
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NFA to DFA conversion

How do we extend our conversion to account for e
transitions?

> Q="P(Qn)
> do(R.0) = € (U on(r.0)

rer

> q5D - E({qSN})
> FD:{RQQN‘RHFN#@}

31/41



NFA to DFA Conversion Example

Let's convert the following NFA to a DFA
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NFA to DFA Conversion Example

a, b
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NFA to DFA Conversion Example

a, b

Unreachable states
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NFAs and regular languages

» Recall that the regular languages are the
languages recognized by DFAs

» We have proven that DFAs and NFAs are
equivalent

» Corollary: a language is regular if and only if
it is recognized by an NFA

» It will often be more convenient use NFAs when
we want to show that a langauge is regular!
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Recall the regular operations:

» Union:
AUB ={w|w e Aor w € B}
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Regular operations

Recall the regular operations:

» Union:
AUB ={w|w e Aor w € B}

» Concatenation:
AoB={w=wmw|w, € A, w, € B}
> (Kleene) Star:
A ={et U{w =ww...w,|w; € A}
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Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

» With DFAs, it was messy

With NFAs, this will be easy!

Proof idea: We will combine the DFAs for L
and L, into an NFA that simulates the regular
operation.

>
>
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Kleene's Theorem

Theorem: The regular languages are closed under
the regular operations

» Want to show that if L1 and L, are regular,
then L; U Ly, Ly o Ly, and L] are regular

» With DFAs, it was messy

With NFAs, this will be easy!

>

» Proof idea: We will combine the DFAs for L;
and L, into an NFA that simulates the regular
operation.

» For Kleene star we only modify the DFA for L,
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Closure under union

» Let N recognize L; and let N, recognize L,

» Start with the two smaller NFAs

» Add a new start state

» Add € transitions to the two original start states
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Closure under union

NFA for L1

O

NFA for L2

O

“Guess” which
machine to use

e)e

o)e
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Closure under concatenation

» Let N recognize L; and let N, recognize L,
» Start with the two smaller NFAs

» Add an ¢ transition between N;'s accept
state(s) and N,'s start state

» Accept states in N are no longer accept states
(we have to accept in N\,)
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Closure under concatenation

NFA for L1 NFA for L2

-~ =0
O
O O -

“Guess” where to
split the input string
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Closure under Kleene star

» Let N; recognize L
» Start with the smaller NFA
» Add € transitions from each accept state back

to the start state

» Add an new start state with an € transition to
the original start state

» This new start state will also be an accept state
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Closure under Kleene star

“Guess” where to split
up the input string

€

NFA for L1
£

Special start state for
accepting ¢ (i,e., 0 copies)
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