Mathematical notation, sets, and proof techniques

Arjun Chandrasekhar

$$\blacktriangleright$$
 Σ, σ - "sigma"

Σ, σ - "sigma"
 Γ, γ - "gamma"

- Σ, σ "sigma"
 Γ, γ "gamma"
 δ "delta"
- $\blacktriangleright \epsilon, \varepsilon$ "epsilon"

2

\blacktriangleright \Rightarrow - "implies", "if ... then ..."

- ▶ \Rightarrow "implies", "if ... then ..."
- \blacktriangleright \Leftrightarrow "equivalent", "if and only if"

- ▶ \Rightarrow "implies", "if ... then ..."
- \blacktriangleright \Leftrightarrow "equivalent", "if and only if"

3

► ∨ - "OR"

- ▶ \Rightarrow "implies", "if ... then ..."
- \blacktriangleright \Leftrightarrow "equivalent", "if and only if"

- ▶ \Rightarrow "implies", "if ... then ..."
- \blacktriangleright \Leftrightarrow "equivalent", "if and only if"

3

- ► ∨ "OR"
- ► ∧ "AND"
- ▶ ¬ "NOT"

4 / 22

\blacktriangleright \in - "Set inclusion", "is an element of"

4 / 22

▶ ∈ - "Set inclusion", "is an element of" ▶ $1 \in \{1, 2, 3, 4\}$

4

- ► "Set inclusion", "is an element of"
 ► 1 ∈ {1, 2, 3, 4}
- ▶ \notin "Set exclusion", "is not an element of"

► \in - "Set inclusion", "is an element of"

▶
$$1 \in \{1, 2, 3, 4\}$$

▶ \notin - "Set exclusion", "is not an element of"

▶ $10 \notin \{1, 2, 3, 4\}$

 \blacktriangleright \in - "Set inclusion", "is an element of"

▶
$$1 \in \{1, 2, 3, 4\}$$

- ∉ "Set exclusion", "is not an element of"

 10 ∉ {1,2,3,4}
- ▶ A^c, \overline{A} "complement of A"

 $\blacktriangleright\ \in$ - "Set inclusion", "is an element of"

▶
$$1 \in \{1, 2, 3, 4\}$$

▶ \notin - "Set exclusion", "is not an element of"

▶ $10 \notin \{1, 2, 3, 4\}$

• A^c, \overline{A} - "complement of A"

 $\blacktriangleright \{x | x \notin A\}$

 \blacktriangleright \in - "Set inclusion", "is an element of"

•
$$1 \in \{1, 2, 3, 4\}$$

▶ \notin - "Set exclusion", "is not an element of"

▶ $10 \notin \{1, 2, 3, 4\}$

▶ A^c, \overline{A} - "complement of A"

•
$$\{x | x \notin A\}$$

► \in - "Set inclusion", "is an element of" ► $1 \in \{1, 2, 3, 4\}$

•
$$1 \in \{1, 2, 3, 4\}$$

▶ \notin - "Set exclusion", "is not an element of"

▶ $10 \notin \{1, 2, 3, 4\}$

▶ A^c, \overline{A} - "complement of A"

$$\{x | x \notin A\}$$

$$\blacktriangleright \{x | x \in A \lor x \in B\}$$

 \blacktriangleright \in - "Set inclusion", "is an element of" ▶ $1 \in \{1, 2, 3, 4\}$ ∉ - "Set exclusion", "is not an element of" ▶ $10 \notin \{1, 2, 3, 4\}$ \blacktriangleright A^c, \overline{A} - "complement of A" \blacktriangleright { $x | x \notin A$ } A ∪ B - "Union", "A or B" $\blacktriangleright \{x | x \in A \lor x \in B\}$ \blacktriangleright $A \cap B$ - "Intersection". "A and B"

 \blacktriangleright \in - "Set inclusion", "is an element of" ▶ $1 \in \{1, 2, 3, 4\}$ ∉ - "Set exclusion", "is not an element of" ▶ $10 \notin \{1, 2, 3, 4\}$ \blacktriangleright A^c, \overline{A} - "complement of A" \blacktriangleright { $x | x \notin A$ } A ∪ B - "Union", "A or B" $\blacktriangleright \{x | x \in A \lor x \in B\}$ \blacktriangleright $A \cap B$ - "Intersection". "A and B" $\blacktriangleright \{x | x \in A \land x \in B\}$

 \blacktriangleright \in - "Set inclusion", "is an element of" ▶ $1 \in \{1, 2, 3, 4\}$ \blacktriangleright \notin - "Set exclusion", "is not an element of" ▶ $10 \notin \{1, 2, 3, 4\}$ \blacktriangleright A^c, \overline{A} - "complement of A" \blacktriangleright { $x | x \notin A$ } A ∪ B - "Union", "A or B" $\blacktriangleright \{x | x \in A \lor x \in B\}$ \blacktriangleright $A \cap B$ - "Intersection". "A and B" $\blacktriangleright \{x | x \in A \land x \in B\}$ ► A\B - "Set difference", "A but not B"

 \blacktriangleright \in - "Set inclusion", "is an element of" ▶ $1 \in \{1, 2, 3, 4\}$ ∉ - "Set exclusion", "is not an element of" ▶ $10 \notin \{1, 2, 3, 4\}$ \blacktriangleright A^c, \overline{A} - "complement of A" \blacktriangleright { $x | x \notin A$ } ► A ∪ B - "Union". "A or B" $\blacktriangleright \{x | x \in A \lor x \in B\}$ \blacktriangleright $A \cap B$ - "Intersection". "A and B" $\blacktriangleright \{x | x \in A \land x \in B\}$ ► A\B - "Set difference", "A but not B" $\blacktriangleright \{x | x \in A, x \notin B\}$

$\blacktriangleright (A \cup B)^c = (A^c \cap B^c)$

$$(A \cup B)^c = (A^c \cap B^c)$$
$$(A \cap B)^c = (A^c \cup B^c)$$

Let S be a set

Let S be a set Let Φ(x₁, x₂,..., x_n) be a function/operation

Let S be a set
Let Φ(x₁, x₂,..., x_n) be a function/operation
Suppose x₁,...x_n ∈ S ⇒ Φ(x₁,...x_n) ∈ S

- Let S be a set
- Let $\Phi(x_1, x_2, \dots, x_n)$ be a function/operation
- Suppose $x_1, \ldots x_n \in S \Rightarrow \Phi(x_1, \ldots x_n) \in S$
- We say S is closed under Φ

- Let S be a set
- Let $\Phi(x_1, x_2, \ldots, x_n)$ be a function/operation
- Suppose $x_1, \ldots x_n \in S \Rightarrow \Phi(x_1, \ldots x_n) \in S$
- We say S is closed under Φ
- "If we start with elements of S and apply the operation Φ, the result is still an element of S"

▶ The integers are closed under addition/+

- ▶ The integers are closed under addition/+
 - If you start with two integers and add the together, you get an integer

▶ The integers are closed under addition/+

- If you start with two integers and add the together, you get an integer
- The integers are closed under subtraction/-

▶ The integers are closed under addition/+

- If you start with two integers and add the together, you get an integer
- The integers are closed under subtraction/-
 - If you start with two integers and subtract them, you get an integer

▶ The integers are closed under addition/+

- If you start with two integers and add the together, you get an integer
- The integers are closed under subtraction/-
 - If you start with two integers and subtract them, you get an integer
- The positive integers are not closed under subtraction/-

- ▶ The integers are closed under addition/+
 - If you start with two integers and add the together, you get an integer
- The integers are closed under subtraction/-
 - If you start with two integers and subtract them, you get an integer
- The positive integers are not closed under subtraction/-
 - If you start with two positive integers and subtract them, you might get a negative number

Which of the following operations are the positive integers closed under?

A. Negation

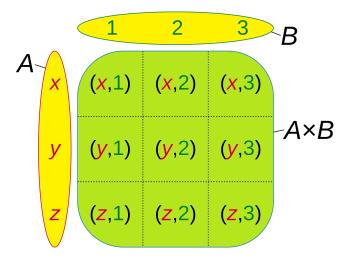
- **B.** Reversing the digits
- C. Multiplication
- **D.** Division

Which of the following operations are the positive integers closed under?

A. Negation

- **B.** Reversing the digits \checkmark
- **C.** Multiplication \checkmark
- **D.** Division

$$A \times B = \{(a, b) | a \in A, b \in B\}$$



$$A imes B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{$ red, blue $\}, C = \{1502\}$

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{\text{red, blue}\}, C = \{1502\}$
> What is $A \times B$?

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{\text{red, blue}\}, C = \{1502\}$
> What is $A \times B$?

{(1, red), (1, blue), (2, red), (2, blue)}

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{\text{red, blue}\}, C = \{1502\}$
> What is $A \times B$?
> $\{(1, \text{red}), (1, \text{blue}), (2, \text{red}), (2, \text{blue})\}$
> What is $A \times A$?

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{\text{red, blue}\}, C = \{1502\}$
> What is $A \times B$?
> $\{(1, \text{red}), (1, \text{blue}), (2, \text{red}), (2, \text{blue})\}$
> What is $A \times A$?
> $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{\text{red, blue}\}, C = \{1502\}$
> What is $A \times B$?
> $\{(1, \text{red}), (1, \text{blue}), (2, \text{red}), (2, \text{blue})\}$
> What is $A \times A$?
> $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$
> What is $C \times C \times B$?

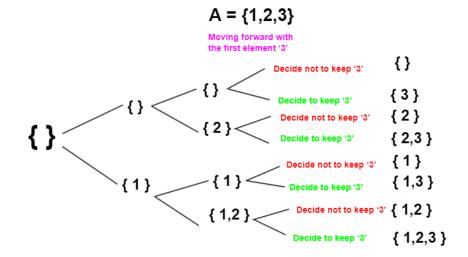
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Let $A = \{1, 2\}, B = \{\text{red, blue}\}, C = \{1502\}$
> What is $A \times B$?
> $\{(1, \text{red}), (1, \text{blue}), (2, \text{red}), (2, \text{blue})\}$
> What is $A \times A$?
> $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$
> What is $C \times C \times B$?
> $\{(1502, 1502, \text{red}), (1502, 1502, \text{blue})\}$

▶ Let *S* be a set

Let S be a set

The power set P(S) is the set of all subsets of S



Let S be a set

- The power set P(S) is the set of all subsets of S
- What is $\mathcal{P}(\{0, 1, 2\})$?

Let S be a set

- The power set P(S) is the set of all subsets of S
- ► What is P({0,1,2})?

 $\mathcal{P}(\{0,1,2\}) = \\ \{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\} \}$

Let S be a set

- The power set P(S) is the set of all subsets of S
- What is P({0,1,2})?
 P({0,1,2}) =
 {∅, {0}, {1}, {2}, {0,1}, {1,2}, {0,2}, {0,1,2}}
 What is P({even, odd})?

Let S be a set

- The power set P(S) is the set of all subsets of S
- What is $\mathcal{P}(\{0,1,2\})$? $\mathcal{P}(\{0,1,2\}) = \{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}\}$

- What is P({even, odd})?
 - $\mathcal{P}(\{\text{even}, \text{odd}\}) = \{\emptyset, \{\text{even}\}, \{\text{odd}\}, \{\text{even}, \text{odd}\}\}$

Let S be a set

- The power set P(S) is the set of all subsets of S
- What is P({0,1,2})?
 P({0,1,2}) =
 {Ø, {0}, {1}, {2}, {0,1}, {1,2}, {0,2}, {0,1,2}}
 What is P({even, odd})?
 P({even, odd}) =
 {Ø, {even}, {odd}, {even, odd}}
 What is P({(0,1,2,3,4,5)})?

 $10 \, / \, 22$

Let S be a set

- The power set P(S) is the set of all subsets of S
- What is P({0,1,2})?
 P({0,1,2}) =
 {∅, {0}, {1}, {2}, {0,1}, {1,2}, {0,2}, {0,1,2}}
 What is P({even, odd})?
 P({even, odd}) =
 {∅, {even}, {odd}, {even, odd}}
 What is P({(0,1,2,3,4,5)})?
 - $\blacktriangleright \mathcal{P}(\{(0,1,2,3,4,5)\}) = \{\emptyset, \{(0,1,2,3,4,5)\}\}$

$10 \, / \, 22$

Imagine several dominoes lined up

Imagine several dominoes lined up

 Suppose we figure out how to knock over the first domino

Imagine several dominoes lined up

- Suppose we figure out how to knock over the first domino
- Suppose we line up the dominoes so that if one domino falls, it is guaranteed to knock over the first domino

Imagine several dominoes lined up

- Suppose we figure out how to knock over the first domino
- Suppose we line up the dominoes so that if one domino falls, it is guaranteed to knock over the first domino
- What happens to the rest?

Base Case: prove the claim for the simplest possible example

- Base Case: prove the claim for the simplest possible example
- Inductive Case: prove that if the claim is true for n = k, then the claim must be true for n = k + 1

- Base Case: prove the claim for the simplest possible example
- Inductive Case: prove that if the claim is true for n = k, then the claim must be true for n = k + 1
- Conclude the claim is true for all N

- Base Case: prove the claim for the simplest possible example
- Inductive Case: prove that if the claim is true for n = k, then the claim must be true for n = k + 1
- Conclude the claim is true for all N

$$\blacktriangleright N = 0 \Longrightarrow N = 1$$

- Base Case: prove the claim for the simplest possible example
- Inductive Case: prove that if the claim is true for n = k, then the claim must be true for n = k + 1
- Conclude the claim is true for all N

$$\blacktriangleright N = 0 \Longrightarrow N = 1$$

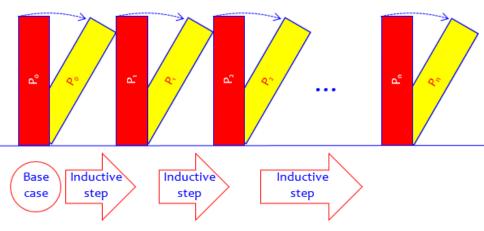
$$\blacktriangleright N = 1 \Longrightarrow N = 2$$

$$12 \, / \, 22$$

- Base Case: prove the claim for the simplest possible example
- Inductive Case: prove that if the claim is true for n = k, then the claim must be true for n = k + 1
- Conclude the claim is true for all N

$$N = 0 \implies N = 1$$
$$N = 1 \implies N = 2$$

$$12 \, / \, 22$$



12/22

Proof by induction: Gauss's formula

Let's prove Gauss's formula:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Proof by induction: Gauss's formula

Let's prove Gauss's formula:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Base case: Let n = 1

Proof by induction: Gauss's formula

Let's prove Gauss's formula:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• Base case: Let n = 1 $\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$

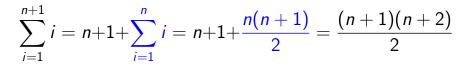
- Proof by induction: Gauss's formula Let's prove Gauss's formula: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - Inductive case: Assume that the formula holds true for *n*, i.e. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

- Proof by induction: Gauss's formula Let's prove Gauss's formula: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - Inductive case: Assume that the formula holds true for n, i.e. ⁿ_{i=1} i = n(n+1)/2.

 We want to show the formula is true for n + 1

We want to show the formula is true for
$$n + 1$$
,
i.e. $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

- Proof by induction: Gauss's formula Let's prove Gauss's formula: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - Inductive case: Assume that the formula holds true for *n*, i.e. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
 - We want to show the formula is true for n + 1, i.e. $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$



14 / 22

Proof by induction example

Let's prove that for $n \ge 4$, $2^n < n!$

Proof by induction example

Let's prove that for $n \ge 4$, $2^n < n!$ **Base Case:** Let n = 4

Proof by induction example

Let's prove that for n ≥ 4, 2ⁿ < n! ▶ Base Case: Let n = 4 2⁴ = 16 < 24 = 4!

15/22

Proof by Induction Example

- Let's prove that for $n \ge 4$, $2^n < n!$
 - Inductive Case: Assume the formula holds for n, i.e. 2ⁿ < n!</p>

Proof by Induction Example

Let's prove that for $n \ge 4$, $2^n < n!$

- Inductive Case: Assume the formula holds for n, i.e. 2ⁿ < n!</p>
- Let's prove it for n + 1, i.e. $2^{n+1} < (n + 1)!$

$$16 \, / \, 22$$

Proof by Induction Example

Let's prove that for $n \ge 4$, $2^n < n!$

- Inductive Case: Assume the formula holds for n, i.e. 2ⁿ < n!</p>
- Let's prove it for n + 1, i.e. $2^{n+1} < (n + 1)!$ $2^{n+1} = 2 \times 2^n < (n + 1) \times n! = (n + 1)!$

AFSOC

17 / 22

Assume

Assume For

Assume For Sake

Assume For Sake Of

AFSOC

Assume For Sake Of Contradiction

17 / 22

AFSOC

Assume For Sake Of Contradiction

(h/t Stephen Worlow)

 $17 \, / \, 22$

$18 \, / \, 22$

Suppose we want to prove that x is true, and we know that y is false. We prove x as follows:

Suppose we want to prove that x is true, and we know that y is false. We prove x as follows:

1. Assume for sake of contradiction (AFSOC) that x is false

Suppose we want to prove that x is true, and we know that y is false. We prove x as follows:

- 1. Assume for sake of contradiction (AFSOC) that x is false
- 2. Show that $\neg x \implies y$ (which we know is false)

18

Suppose we want to prove that x is true, and we know that y is false. We prove x as follows:

- 1. Assume for sake of contradiction (AFSOC) that x is false
- 2. Show that $\neg x \implies y$ (which we know is false)

18

3. Conclude that $\neg x$ is false, and x is true

$19 \, / \, 22$

Theorem: My third grade teacher did not witness Lincoln's assassination.

Theorem: My third grade teacher did not witness Lincoln's assassination.

 AFSOC that my third grade teacher witnessed Lincoln's assassination.

Theorem: My third grade teacher did not witness Lincoln's assassination.

- AFSOC that my third grade teacher witnessed Lincoln's assassination.
- Then my third grade teacher would have been at least 135 years old when I was her student

$$19 \, / \, 22$$

Theorem: My third grade teacher did not witness Lincoln's assassination.

- AFSOC that my third grade teacher witnessed Lincoln's assassination.
- Then my third grade teacher would have been at least 135 years old when I was her student

No human has ever lived to be that old

Theorem: My third grade teacher did not witness Lincoln's assassination.

- AFSOC that my third grade teacher witnessed Lincoln's assassination.
- Then my third grade teacher would have been at least 135 years old when I was her student

19

- No human has ever lived to be that old
- Our original assumption leads to a logical contradiction.

Theorem: My third grade teacher did not witness Lincoln's assassination.

- AFSOC that my third grade teacher witnessed Lincoln's assassination.
- Then my third grade teacher would have been at least 135 years old when I was her student
 - No human has ever lived to be that old
- Our original assumption leads to a logical contradiction.
- Thus, we conclude that she did not witness Lincoln's assassination.

 $19 \, / \, 22$

Proposition: There are infinitely many primes.

Proposition: There are infinitely many primes.

AFSOC there are finitely many primes

 p_1, p_2, \ldots, p_n

Proposition: There are infinitely many primes.

AFSOC there are finitely many primes

 $p_1, p_2, ..., p_n$

• Let $N = p_1 \cdot p_2 \cdot \ldots \cdot p_{n-1} \cdot p_n + 1$

Proposition: There are infinitely many primes.

AFSOC there are finitely many primes

 $p_1, p_2, ..., p_n$

- Let $N = p_1 \cdot p_2 \cdot \ldots \cdot p_{n-1} \cdot p_n + 1$
- None of $p_1, p_2, \ldots p_n$ divides N

Proposition: There are infinitely many primes.

AFSOC there are finitely many primes

 $p_1, p_2, ..., p_n$

- Let $N = p_1 \cdot p_2 \cdot \ldots \cdot p_{n-1} \cdot p_n + 1$
- None of $p_1, p_2, \ldots p_n$ divides N
- N has no prime factors, which is a contradiction

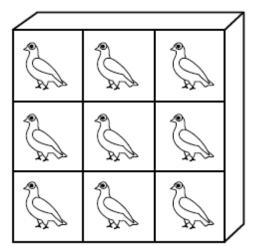
Proposition: There are infinitely many primes.

AFSOC there are finitely many primes

 $p_1, p_2, ..., p_n$

- Let $N = p_1 \cdot p_2 \cdot \ldots \cdot p_{n-1} \cdot p_n + 1$
- None of $p_1, p_2, \ldots p_n$ divides N
- N has no prime factors, which is a contradiction
- We conclude that our original assumption was incorrect.

THE PIGEONHOLE PRINCIPLE



21 / 22

The pigeonhole principle states that if there are m pigeonholes and n > m pigeons, there must be a pigeonhole with multiple pigeons

- The pigeonhole principle states that if there are m pigeonholes and n > m pigeons, there must be a pigeonhole with multiple pigeons
 - Formally, there does not exist an injective function whose co-domain is smaller than its domain

- The pigeonhole principle states that if there are m pigeonholes and n > m pigeons, there must be a pigeonhole with multiple pigeons
 - Formally, there does not exist an injective function whose co-domain is smaller than its domain
- If you have three gloves, at least two of them must fit the same hand

- The pigeonhole principle states that if there are m pigeonholes and n > m pigeons, there must be a pigeonhole with multiple pigeons
 - Formally, there does not exist an injective function whose co-domain is smaller than its domain
- If you have three gloves, at least two of them must fit the same hand
- A room of 367 people must include a shared birthday

21/22

Proposition: Let G be a directed graph in which every vertex has at least one outgoing edge. Prove that G has a directed cycle.

22

Proposition: Let G be a directed graph in which every vertex has at least one outgoing edge. Prove that G has a directed cycle.

• Perform a random walk. v_1 can be any vertex, and v_{i+1} can be outbound neighbor of v_i

Proposition: Let G be a directed graph in which every vertex has at least one outgoing edge. Prove that G has a directed cycle.

- Perform a random walk. v₁ can be any vertex, and v_{i+1} can be outbound neighbor of v_i
 - It is always possible to continue the walk, since every vertex has at least one outgoing edge

22

Proposition: Let G be a directed graph in which every vertex has at least one outgoing edge. Prove that G has a directed cycle.

- Perform a random walk. v_1 can be any vertex, and v_{i+1} can be outbound neighbor of v_i
 - It is always possible to continue the walk, since every vertex has at least one outgoing edge
- Let n be the number of vertices in G. Look at v₁, v₂, ..., v_{n+1}

Proposition: Let G be a directed graph in which every vertex has at least one outgoing edge. Prove that G has a directed cycle.

- Perform a random walk. v_1 can be any vertex, and v_{i+1} can be outbound neighbor of v_i
 - It is always possible to continue the walk, since every vertex has at least one outgoing edge
- Let n be the number of vertices in G. Look at v₁, v₂,..., v_{n+1}
- By the pigeonhole principle, one of the first n+1 vertices must be a repeat - which gives us our cycle

 $22 \, / \, 22$