
Mathematical notation, sets, and
proof techniques

Arjun Chandrasekhar

1 / 22



Greek symbols

I Σ, σ - “sigma”

I Γ, γ - “gamma”

I δ - “delta”

I ε, ε - “epsilon”
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Logical symbols

I ⇒ - “implies”, “if ... then ...”

I ⇔ - “equivalent”, “if and only if”

I ∨ - “OR”

I ∧ - “AND”

I ¬ - “NOT”
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Set notation

I ∈ - “Set inclusion”, “is an element of”

I 1 ∈ {1, 2, 3, 4}

I /∈ - “Set exclusion”, “is not an element of”

I 10 /∈ {1, 2, 3, 4}

I Ac ,A - “complement of A”

I {x |x /∈ A}

I A ∪ B - “Union”, “A or B”

I {x |x ∈ A ∨ x ∈ B}

I A ∩ B - “Intersection”, “A and B”

I {x |x ∈ A ∧ x ∈ B}

I A\B - ”Set difference”, ”A but not B”

I {x |x ∈ A, x /∈ B}
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De Morgan’s Laws

I (A ∪ B)c = (Ac ∩ Bc)

I (A ∩ B)c = (Ac ∪ Bc)

I Note: (Ac)c = A
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Set closure

I Let S be a set

I Let Φ(x1, x2, . . . , xn) be a function/operation

I Suppose x1, . . . xn ∈ S ⇒ Φ(x1, . . . xn) ∈ S

I We say S is closed under Φ

I “If we start with elements of S and apply the
operation Φ, the result is still an element of S”
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Set Closure

I The integers are closed under addition/+

I If you start with two integers and add the together,
you get an integer

I The integers are closed under subtraction/-

I If you start with two integers and subtract them,
you get an integer

I The positive integers are not closed under
subtraction/-

I If you start with two positive integers and subtract
them, you might get a negative number
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Set closure

Which of the following operations are the positive
integers closed under?

A. Negation
B. Reversing the digits

X

C. Multiplication

X

D. Division
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Cartesian product

A× B = {(a, b)|a ∈ A, b ∈ B}
Let A = {1, 2}, B = {red, blue}, C = {1502}

I What is A× B?

I {(1, red), (1, blue), (2, red), (2, blue)}

I What is A× A?

I {(1, 1), (1, 2), (2, 1), (2, 2)}

I What is C × C × B?

I {(1502, 1502, red), (1502, 1502, blue)}
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Power set

I Let S be a set

I The power set P(S) is the set of all subsets
of S

I What is P({0, 1, 2})?

I P({0, 1, 2}) =
{∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}

I What is P({even, odd})?

I P({even, odd}) =
{∅, {even}, {odd}, {even, odd}}

I What is P({(0, 1, 2, 3, 4, 5)})?

I P({(0, 1, 2, 3, 4, 5)}) = {∅, {(0, 1, 2, 3, 4, 5)}}
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Proof by Induction

I Imagine several dominoes lined up

I Suppose we figure out how to knock over the first
domino

I Suppose we line up the dominoes so that if one
domino falls, it is guaranteed to knock over the
first domino

I What happens to the rest?
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Proof by Induction

I Base Case: prove the claim for the simplest
possible example

I Inductive Case: prove that if the claim is true
for n = k , then the claim must be true for
n = k + 1

I Conclude the claim is true for all N

I N = 0 =⇒ N = 1
I N = 1 =⇒ N = 2
I . . .
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Proof by induction: Gauss’s formula

Let’s prove Gauss’s formula:
n∑

i=1

i =
n(n + 1)

2

I Base case: Let n = 1
1∑

i=1

i = 1 =
1(1 + 1)

2
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Proof by induction example

Let’s prove that for n ≥ 4, 2n < n!

I Base Case: Let n = 4

24 = 16 < 24 = 4!
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Proof by contradiction

Suppose we want to prove that x is true, and we
know that y is false. We prove x as follows:

1. Assume for sake of contradiction (AFSOC)
that x is false

2. Show that ¬x =⇒ y (which we know is false)

3. Conclude that ¬x is false, and x is true
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Proof by Contradiction Example

Theorem: My third grade teacher did not witness
Lincoln’s assassination.

I AFSOC that my third grade teacher witnessed
Lincoln’s assassination.

I Then my third grade teacher would have been
at least 135 years old when I was her student

I No human has ever lived to be that old

I Our original assumption leads to a logical
contradiction.

I Thus, we conclude that she did not witness
Lincoln’s assassination.
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Proof by Contradiction Example

Proposition: There are infinitely many primes.

I AFSOC there are finitely many primes
p1, p2, . . . , pn

I Let N = p1 · p2 · . . . pn−1 · pn + 1

I None of p1, p2, . . . pn divides N

I N has no prime factors, which is a
contradiction

I We conclude that our original assumption was
incorrect.
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The Pigeonhole Principle

I The pigeonhole principle states that if there
are m pigeonholes and n > m pigeons, there
must be a pigeonhole with multiple pigeons

I Formally, there does not exist an injective function
whose co-domain is smaller than its domain

I If you have three gloves, at least two of them
must fit the same hand

I A room of 367 people must include a shared
birthday
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The Pigeonhole Principle
Proposition: Let G be a directed graph in which
every vertex has at least one outgoing edge. Prove
that G has a directed cycle.

I Perform a random walk. v1 can be any vertex,
and vi+1 can be outbound neighbor of vi

I It is always possible to continue the walk, since
every vertex has at least one outgoing edge

I Let n be the number of vertices in G . Look at
v1, v2, . . . , vn+1

I By the pigeonhole principle, one of the first
n + 1 vertices must be a repeat - which gives
us our cycle
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