
Theory of Computation
Poly-time reductions,
NP-completeness

1 / 39

The million dollar question

“What is the largest group of Facebook users that
are all connected to each other”

I Can you write an e�cient algorithm to answer
this question?

I Can you prove that no e�cient algorithm
exists for this problem?

2 / 39

Poly-time computable functions

I Recall: A function f : ⌃⇤ ! ⌃⇤ is
computable if there is a Turing machine M

that computes it
I If we start with w on the tape, M will halt leave

f (w) on the tape

I Def: a computable function f is poly-time
computable if M runs in polynomial time

3 / 39

Poly-time reductions

I Recall: We say A M B if there is a
computable function f : ⌃⇤ ! ⌃⇤ such that
w 2 A, f (w) 2 B

I “YES maps to YES”
I “NO maps to NO”

I Def: We say A is poly-time reducible to B

(denoted A poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39

Poly-time reductions

5 / 39

Implications of poly-time reducibility
Theorem: If B 2 P and A poly B , then A 2 P
I Since B 2 P, there is a machine MB that

decides B in poly-time
I Since A poly B there is a poly-time

computable function f such that
w 2 A, f (w) 2 B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39

Implications of polytime-reducibility

7 / 39

IND-SET poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E

edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
hG , ki; otherwise reject

8 / 39

IND-SET poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E

edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
hG , ki; otherwise reject

8 / 39

IND-SET poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E

edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
hG , ki; otherwise reject

Poly-time: O(E) to construct G

8 / 39

IND-SET poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E

edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
hG , ki; otherwise reject

“YES maps to YES”: If G has a k-independent
set, then those same vertices will all be connected in
G

8 / 39

IND-SET poly CLIQUE
We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E

edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
hG , ki; otherwise reject

“NO maps to NO”: If G doesn’t have a
k-independent set, then every set of k vertices has
at least one edge. Those same vertices will be
missing an edge in G

8 / 39

IND-SET poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E

edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
hG , ki; otherwise reject

8 / 39

3-SAT poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x _ y _ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39

3-SAT poly IND-SET
We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x _ y _ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39

3-SAT poly IND-SET: poly-time

I O(m) vertices
I O(m) + O(n2) edges
I O(m) + O(n2) = poly-time

10 / 39

3-SAT poly IND-SET: yes ! yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set
I Every clause has at least one true variable
I Variables from di↵erent clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses ! m triangles ! m-independent set
11 / 39

3-SAT poly IND-SET: no ! no

Show the contrapositive: yes yes
I Suppose G has a an independent set of size m
I Set the variables that are part of the

independent set to be TRUE
I There must be one vertex from each “triangle” in

the set, so every clause will be satisfied
I x and ¬x are connected, so our independent set

will not include a contradictory assignment 12 / 39

NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L

I A 2 NP =) A poly L

I Def: L is NP-complete if:
1. L 2 NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39

NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L

I A 2 NP =) A poly L

I Def: L is NP-complete if:
1. L 2 NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39

3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT� SAT is
NP-complete
I Like 3-SAT, but we can use any combination

of ¬,_,^
I Proof idea: create a boolean circuit that

checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete
I Every boolean circuit can be converted to a

3-CNF circuit

See Sipser for full proof

14 / 39

3-SAT is NP-complete

15 / 39

Transitivity of poly

Proposition: If A poly B and B poly C , then
A poly C

I There exists a poly-time computable function f

such that w 2 A, f (w) 2 B

I There exists a poly-time computable function g

such that w 2 B , g(w) 2 C

I w 2 A, f (w) 2 B , g(f (w)) 2 C

I g � f is a poly-time reduction from A to C !

16 / 39

Transitivity of poly

17 / 39

Transitivity of NP-Completeness
Corollary: If A is NP-complete, and A poly B ,
then B is NP-complete

18 / 39

Implications of 3-SAT NP-Completeness

I We can use 3-SAT to prove that other
languages are NP-complete!
I If we can show that 3-SAT poly L, it follows that

L is also complete!

I And we can use those other languages to show
that even more languages are NP-complete

19 / 39

Implications of 3-SAT NP-Completeness

20 / 39

IND-SET is NP-Complete
I 3-SAT is known to be NP-complete
I We proved that 3-SAT poly IND-SET
I Thus, IND-SET is NP-complete

21 / 39

CLIQUE is NP-Complete
I IND-SET is known to be NP-Complete
I We proved that IND-SET poly CLIQUE
I Thus, CLIQUE is NP-Complete

22 / 39

SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT
1. We will create a number for each variable xi

and its negation
I The digits of the number correspond to which

clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment
I To reach the target, each clause needs to have at

least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39

3-SAT poly SUBSET-SUM: variables

I We want our numbers to correspond to
assigning each variable to TRUE or FALSE

I For each variable xi , we will create two
numbers: xTRUE

i and x
FALSE
i

I We will design our desired total so that exactly
one of these two numbers must be picked

24 / 39

3-SAT poly SUBSET-SUM: variables

25 / 39

3-SAT poly SUBSET-SUM: clauses

I We want our numbers to correspond to
satisfying certain clauses

I For each number, we will add an extra digit for
each clause
I The extra digits signifiy which variables satisfy

which clauses

I We will design our desired total so that (at
least) one variable must be picked for each
clause

26 / 39

3-SAT poly SUBSET-SUM: clauses

27 / 39

3-SAT poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause
I Problem: What if a clause has more than one

TRUE variable?
I Attempt 2: Include a 3 digit for each clause

I Problem: A satisfied clause might have only 1 or
2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39

3-SAT poly SUBSET-SUM: fillers

I For each clause, introduce two fillers

I From a given clause, if at least one variable is
TRUE, we can use up to two fillers to bring
the total for that clause to 3

I If all variables in a clause are FALSE, then
that clause will never add up to 3 (even with
the fillers)

29 / 39

3-SAT poly SUBSET-SUM: fillers

30 / 39

3-SAT poly SUBSET-SUM

31 / 39

3-SAT poly SUBSET-SUM: poly-time

I O(n) “variable” numbers
I O(m) “filler” numbers
I Each number has O(n +m) base-10 digits
I (O(n) + O(m)) · O(n +m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding
I If we could find a poly-time reduction that uses

unary, we would have proven that P = NP

32 / 39

3-SAT poly SUBSET-SUM: yes ! yes
“YES maps to YES”:
I Suppose F has a satisfying assignment
I If xi is assigned TRUE, include x

TRUE
i in our

subset. Otherwise, include x
FALSE
i

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39

3-SAT poly SUBSET-SUM: no ! no

“NO maps to NO”:
I Suppose F is unsatisfiable
I Every satisfying assignment will leave at least

one clause unsatisfied
I One of the last m digits of our subset will add

up to at most 2
I Without at least one TRUE variable, we don’t

have enough fillers to make that clause add up to 3

34 / 39

3-SAT poly SUBSET-SUM: no ! no

Alternately, we can prove the contrapositive: yes
yes
I Suppose there exists a subset that adds up to B

I Assign all of the variables that are part of the
subset to be TRUE

I Because the first n digits of B are 1, we won’t
have a variable and its negation both be TRUE

I Because the last m digits of B are all 3, and
there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 / 39

P vs. NP

36 / 39

P vs. NP

36 / 39

P vs. NP

36 / 39

The million dollar question

Can you design an e�cient algorithm to find the
biggest clique on Facebook?
I If you can do this, then P = NP
I If you believe that P 6= NP, then this task is

impossible

There is a million dollar bounty on the answer
to this question!

37 / 39

Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP
I L 2 co-NP, L

c 2 NP
I It is easy to verify if w /2 L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:
I Does NP = co-NP?
I Does P = NP \ co-NP (similar to how decidable

= RE \ co-RE)?

38 / 39

Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory
I Space complexity is calculated based on how

many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused

I Some open questions:
I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39

