Theory of Computation
Poly-time reductions,
NP-completeness

1/39

The million dollar question

“What is the largest group of Facebook users that
are all connected to each other”

» Can you write an efficient algorithm to answer
this question?

» Can you prove that no efficient algorithm
exists for this problem?

2 /39

Poly-time computable functions

» Recall: A function f : 2" — 2" is
computable if there is a Turing machine M
that computes it

» If we start with w on the tape, M will halt leave
f(w) on the tape

» Def: a computable function f is poly-time

computable if M runs in polynomial time

3/39

Poly-time reductions

» Recall: We say A <;; B if there is a
computable function f : 2* — X* such that
weAs f(w)eB

» “YES maps to YES”
» “NO maps to NO”

» Def: We say A is poly-time reducible to B
(denoted A <,y B) if the reduction f is
poly-time computable

» Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4/39

Poly-time reductions

f is poly-time computable

f

5 /39

Implications of poly-time reducibility

Theorem: If B € P and A <,y B, then Ac P

» Since B € P, there is a machine Mg that
decides B in poly-time

» Since A <,qy B there is a poly-time
computable function f such that
weAsS f(w)eB

» Create the following machine poly-time M, to
decide A
1. Compute f(w) (poly-time)
2. Run Mg on f(w) (poly-time)
3. If Mg accepts f(w) then M, accepts w.
Otherwise, M, rejects w.

6 /39

Implications of polytime-reducibility

A< B
poly
IVIA
lVIB
w Compute Process f(w)
—» f(w)in — in poly-time —» Accept/Reject
poly-time using Mg

If we can decide B in poly-time, we can
decide A in poly-time

7/39

IND-SET <,y CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k. If so, accept
(G, k); otherwise reject

8 /39

IND-SET <,y CLIQUE

8 /39

IND-SET <,y CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k. If so, accept
(G, k); otherwise reject

Poly-time: O(E) to construct G

8 /39

IND-SET <,y CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k. If so, accept
(G, k); otherwise reject

“YES maps to YES”: If G has a k-independent
set, then those same vertices will all be connected in

G

8 /39

IND-SET <,y CLIQUE
We reduce from IND-SET to CLIQUE as follows:
1. Input: A graph G with V vertices and E
edges, and an integer k
2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k. If so, accept
(G, k); otherwise reject

“NO maps to NO”: If G doesn’t have a
k-independent set, then every set of k vertices has
at least one edge. Those same vertices will be
missing an edge in G

8 /39

IND-SET <,y CLIQUE

IND-SET £, CLIQUE
poly

IVII
M¢
* Yes o Accept
<G. k> Check if G i
, N
L Construct : ha§ a 0 Reject
G k-clique
using M.

If we can decide CLIQUE in poly-time,
we can decide IND-SET in poly-time

8 /39

3-SAT <01y IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x V y V z), create three nodes
X, y,z and connect them to form a “triangle”

4. If there are nodes x and —x, connect them
with an edge

5. Check if there is an independent set of size m

9/39

3-SAT <01y IND-SET
We reduce from IND-SET to CLIQUE as follows:

(x4 vxzvg)/\(xzvx?’va)/\(ﬁ vx_2vx4)

3-SAT <,oy IND-SET: poly-time

» O(m) vertices
» O(m)+ O(n?) edges
» O(m)+ O(n?) = poly-time

10 /39

3-SAT <, oy IND-SET: yes — yes

(X4 V Xp v X3) A (Xp V X3V Xg) A (Xq V X V Xg)

» Suppose F has a satisfying assignment
» For each “triangle”, pick one of the TRUE
vertices to be in the independent set
» Every clause has at least one true variable
» Variables from different clauses are not connected
» Truth assignment will not let us pick x and —x

» m clauses — m triangles — m-independent set

11 /39

3-SAT <oy IND-SET: no — no

(X4 V Xp v X3) A (Xp V X3V Xg) A (Xq V X V Xg)

Show the contrapositive: yes < yes

» Suppose G has a an independent set of size m
» Set the variables that are part of the
independent set to be TRUE
» There must be one vertex from each “triangle” in
the set, so every clause will be satisfied
» x and —x are connected, so our independent set
will not include a contradictory assignment 19 / 39

NP-completeness

» Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L

> AENP = A<, L
» Def: L is NP-complete if:
1. LeNP
2. Lis NP-Hard
» L is the “hardest” or “most expressive”
problem in NP

13 /39

NP-completeness
L is NP-Hard
A € NP

w Reduce A Decide L in
—» tolLin —% poly-time % Accept/Reject
poly-time using M,

If we can decide L in poly-time, we can
decide every NP language in poly-time!

13 /39

3-SAT is NP-complete

Cook-Levin theorem: CIRCUIT — SAT is
NP-complete
» Like 3-SAT, but we can use any combination
of =, V, A
» Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

» Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof
14 /39

3-SAT is NP-complete
3-SAT is NP-Complete
A € NP

W Reduce A Decide 3-SAT
—» to 3-SAT in —»{ in poly-time > Accept/Reject
poly-time using M

3-SAT

If we can decide 3-SAT in poly-time, we can
decide every NP language in poly-time!

15 /39

Transitivity of <,y

Proposition: If A <, B and B <4y C, then
A Spoly C
» There exists a poly-time computable function f
such that w e A& f(w) € B

» There exists a poly-time computable function g
such that w € B < g(w) € C

> weAs f(w) e Bs g(f(w)) e C
» gof isa poly-time reduction from A to C!

16 / 39

Transitivity of <,y

As B
<poly c
B “poly
MA
MC
\
W Compute Compute Process g(f(w))
» f(w)in —¥ g(f(w))in — inpoly-time —% Accept/Reject
poly-time poly-time using M.

If we can decide C in poly-time,
we can decide A in poly-time

17 /39

Transitivity of NP-Completeness

Corollary: If Ais NP-complete, and A <,y B,
then B is NP-complete

A is NP-Complete

A< B
poly
L € NP
ML
MB
Reduce Reduce *
W . .
> from.Lto from'A to i~ ngde B in > Accept/Reject
Ain Bin poly-time using Mg
poly-time poly-time

If we can decide B in poly-time, we can
decide any language in NP in poly-time!

18 /39

Implications of 3-SAT NP-Completeness

» We can use 3-SAT to prove that other
languages are NP-complete!
» If we can show that 3-SAT <,y L, it follows that
L is also complete!
» And we can use those other languages to show
that even more languages are NP-complete

19 /39

Implications of 3-SAT NP- Completeness

_ THE Flll(lllGATES. e

IND-SET is NP-Complete

» 3-SAT is known to be NP-complete
» We proved that 3-SAT <., IND-SET
» Thus, IND-SET is NP-complete

3-SAT is NP-Complete

3-SAT<_ IND-SET
poly
L € NP
ML
IVII
Reduce Reduce from Decide
W | | fromLto 3-SAT to IND-SET in)
™1 3.8ATin [| IND-SETin | | poly-time | Accep/Reject
poly-time poly-time using M,

If we can decide IND-SET in poly-time, we
can decide any language in NP in poly-time!

21/39

CLIQUE is NP-Complete

» IND-SET is known to be NP-Complete
» We proved that IND-SET <,,;;, CLIQUE
» Thus, CLIQUE is NP-Complete

IND-SET is NP-Complete
IND-SET S oty CLIQUE

L € NP
ML
Mc
w Reduce from Tﬁg‘f;?;ﬁg‘ Decide CLIQUE

L to IND-SET —»f .~ = inpoly-time > Accept/Reject
. ; CLIQUE in)

in poly-time . using M

poly-time c

If we can decide CLIQUE in poly-time, we
can decide any language in NP in poly-time!

22 /39

SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT

1. We will create a number for each variable x;
and its negation

» The digits of the number correspond to which
clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment

» To reach the target, each clause needs to have at
least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 /39

3-SAT <, oy SUBSET-SUM: variables

» We want our numbers to correspond to
assigning each variable to TRUE or FALSE

» For each variable x;, we will create two
numbers: xIRUE gpd xFALSE

i i
» We will design our desired total so that exactly
one of these two numbers must be picked

24 /39

3-SAT <,y SUBSET-SUM: variables

F=0 VX, VX)A(TX, VX,V O)ALLA(X, VX))

n digits (1 per unique variable)
A

4 N\
((x,"5=1 0 0 0 0
xfSE=1 0 0 0 0
x,RE =0 1 0 0 0
2n numbers x,A€=0 1 0 0 0
(2 perunique < x™ =0 0 1 0 0
variable) x, =0 0 1 0 0
x, =0 0 0 0 1 Each variable must
X, F=0 0 0 0 1) be TRUE or FALSE
B =1 1 1 1 1

25 /39

3-SAT <0y SUBSET-SUM: clauses

» We want our numbers to correspond to
satisfying certain clauses

» For each number, we will add an extra digit for
each clause

» The extra digits signifiy which variables satisfy
which clauses

» We will design our desired total so that (at
least) one variable must be picked for each
clause

26 /39

3-SAT <01y SUBSET-SUM: clauses

F=(x S Tr;j';/\(ﬁx1Vx2V jx3)/\.../\(x2 Vx3)
m digits (1 per clause)
A N\
c, C
| 2 m
x,®%¥ =10 0 O 0,1 0 0 Y
x,ME=1"0 0 0 010 1 0
x,E=0 1 0 0 01 1
FALSE — 0 . . .
X —=0 10 0 0,0 0 0 Which variables satisfy
x.TREE =g 0 1 0 01'o0 0 1 > 2
3 1 which clauses”
xAE=0 0 1 0 01 0
1
!
x™E=0 0 0 0 110 0 .. 0
xME=0 0 0 0 11 o .. 0~
B =1 1 1 1 1 (2 2 .. 2) Howdoweensure that
: each clause is satisfied?

27 /39

3-SAT <0y SUBSET-SUM: clauses

» How do we design our target B so that each
clause must be satisfied?

» Attempt 1: Include a 1 digit for each clause

» Problem: What if a clause has more than one
TRUE variable?

» Attempt 2: Include a 3 digit for each clause

» Problem: A satisfied clause might have only 1 or
2 TRUE variables

» How do we represent “between 1 and 3" when
subset sum requires an exact total?

» We will introduce filler numbers

28 /39

3-SAT <, oy SUBSET-SUM: fillers

» For each clause, introduce two fillers

» From a given clause, if at least one variable is
TRUE, we can use up to two fillers to bring
the total for that clause to 3

» If all variables in a clause are FALSE, then
that clause will never add up to 3 (even with
the fillers)

29 /39

3-SAT <, oy SUBSET-SUM: fillers

F= oV) A (X VX, V) ALL A (X, VX,)
1
x®E=1 0 0 0 0! 0 0
xME=1 0 0 0 0! 1 0
x"E=0 1 0 0 0! 1 1
xME=0 1 0 0 0! 0 0
x,"F=0 0 1 0 0! 0 1
xAME=0 0 1 0 0! 1 0
1
... !
x™%E =0 0 0 0 11 0 0
xAE=0 0 0 0 11 0 0
L= 0 0 o0 0.1 0 0
L = 0 0 o0 0,1 0 0
Fillers don’t affect fill,, = 6 0 o0 0,0 1 0 Can use up to 2
variable truth fill,, = 0 0 o0 0 i 0o 1 0 fillers per clause
assignments H
fl, =0 0 0 O 0,0 O 1
fl, =0 0 0 O 0,0 ©
1

B =1 1 1 1 . P 3 3 3 Need > 1 TRUE variable
] + < 2 fillers

3-SAT <0,y SUBSET-SUM

SN (T VX,V T)AL (X, VX))

O O v« O v« O o o
O v« v O O v o o
O OO o oo - -

O O OO «v™ «— o o
O O = v O O o o
- - O O O O o o
L LI | | | I | B n n
w w w w
2259579 39
EFEFrEET EF
S
X X X X X X xX X

1
1

“0000 - -
1

1

1

T

1

1

1

1O O « o o
1

1

1 o o o o
1

e mmmm e
o ooo o o

o O o o o o
o O oo o o
o O oo o o
nm o non non
- o t ¢
_N_AN _E_E
c = = = =
= = = = =

31/39

3-SAT <0y SUBSET-SUM: poly-time

O(n) “variable” numbers

O(m) "“filler" numbers

Each number has O(n + m) base-10 digits
(O(n) + O(m)) - O(n+ m) = poly-time

Note: The length of the numbers would be
exponential if we used a unary encoding

» If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

vvyyvyyvyy

32/39

3-SAT <, oy SUBSET-SUM: yes — yes

“YES maps to YES”:
» Suppose F has a satisfying assignment

» If x; is assigned TRUE, include x™®VE in our

subset. Otherwise, include x ALSE

» A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

» Each clause is satisfied, so we have at least 1 in
the last m positions of B

» Can use up to 2 fillers to get a 3 in the last m
positions of B

33/39

3-SAT <0y SUBSET-SUM: no — no

“NO maps to NO”:
» Suppose F is unsatisfiable

» Every satisfying assignment will leave at least
one clause unsatisfied

» One of the last m digits of our subset will add
up to at most 2

» Without at least one TRUE variable, we don't
have enough fillers to make that clause add up to 3

34 /39

3-SAT <0y SUBSET-SUM: no — no

Alternately, we can prove the contrapositive: yes <
yes
» Suppose there exists a subset that adds up to B
» Assign all of the variables that are part of the
subset to be TRUE
» Because the first n digits of B are 1, we won't
have a variable and its negation both be TRUE
» Because the last m digits of B are all 3, and

there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 /39

P vs. NP

Regular

Languages

36 /39

P vs. NP

Right now

NP

EASY TO CHECK
HARD TO SOLVE

=]

EASY TO SOLVE

If P=NP

P=NP

EASY TO CHECK
EASY TO SOLVE

36 /39

P vs. NP

NP-Hard

NP-Hard

NP-Complete

P = NP
= NP-Complete

Complexity

P # NP P = NP

36 /39

The million dollar question

Can you design an efficient algorithm to find the
biggest clique on Facebook?

» If you can do this, then P = NP

» If you believe that P # NP, then this task is
impossible

There is a million dollar bounty on the answer
to this question!

37/39

Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP
» L €co-NP & LC € NP
> It is easy to verify if w ¢ L
» Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)
» Some open questions:
» Does NP = co-NP?

» Does P = NP N co-NP (similar to how decidable
= RE N co-RE)?

38 /39

Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

» Space complexity is calculated based on how
many extra tape squares are needed to process
the input

» Key insight: Unlike time, space can be reused

» Some open questions:

» Does P = PSPACE?
» Does NP = PSPACE?
» Does PSPACE = EXP?

39/39

