
Theory of Computation: The
Recursion Theorem

Arjun Chandrasekhar

1 / 41

This is my favorite lecture

I I love this topic

I This is the first lecture I ever made from
scratch

I For once, Turing machines will be more
convenient than modern programming
languages

I This lecture got me my first full-time teaching
job

I This lecture lead to one of my favorite teaching
stories

2 / 41

This is my favorite lecture

I I love this topic

I This is the first lecture I ever made from
scratch

I For once, Turing machines will be more
convenient than modern programming
languages

I This lecture got me my first full-time teaching
job

I This lecture lead to one of my favorite teaching
stories

2 / 41

This is my favorite lecture

I I love this topic

I This is the first lecture I ever made from
scratch

I For once, Turing machines will be more
convenient than modern programming
languages

I This lecture got me my first full-time teaching
job

I This lecture lead to one of my favorite teaching
stories

2 / 41

This is my favorite lecture

I I love this topic

I This is the first lecture I ever made from
scratch

I For once, Turing machines will be more
convenient than modern programming
languages

I This lecture got me my first full-time teaching
job

I This lecture lead to one of my favorite teaching
stories

2 / 41

This is my favorite lecture

I I love this topic

I This is the first lecture I ever made from
scratch

I For once, Turing machines will be more
convenient than modern programming
languages

I This lecture got me my first full-time teaching
job

I This lecture lead to one of my favorite teaching
stories

2 / 41

This is my favorite lecture

I I love this topic

I This is the first lecture I ever made from
scratch

I For once, Turing machines will be more
convenient than modern programming
languages

I This lecture got me my first full-time teaching
job

I This lecture lead to one of my favorite teaching
stories

2 / 41

Pop quiz!

For extra credit: write a non-empty program that
prints out its own source code (without using any
I/O operations). You have 20 minutes.

3 / 41

Recall

I Certain problems are not decidable, or even
recognizable

I Initially we proved this with Diagonalization
I Usually we prove this using reduction

I If A is undecidable/unrecognizable, and A ≤M B ,
then B is undecidable/unrecognizable

I Is there an alternative (perhaps easier) way to
prove these results?

4 / 41

Recall

I Certain problems are not decidable, or even
recognizable

I Initially we proved this with Diagonalization
I Usually we prove this using reduction

I If A is undecidable/unrecognizable, and A ≤M B ,
then B is undecidable/unrecognizable

I Is there an alternative (perhaps easier) way to
prove these results?

4 / 41

Recall

I Certain problems are not decidable, or even
recognizable

I Initially we proved this with Diagonalization

I Usually we prove this using reduction

I If A is undecidable/unrecognizable, and A ≤M B ,
then B is undecidable/unrecognizable

I Is there an alternative (perhaps easier) way to
prove these results?

4 / 41

Recall

I Certain problems are not decidable, or even
recognizable

I Initially we proved this with Diagonalization
I Usually we prove this using reduction

I If A is undecidable/unrecognizable, and A ≤M B ,
then B is undecidable/unrecognizable

I Is there an alternative (perhaps easier) way to
prove these results?

4 / 41

Recall

I Certain problems are not decidable, or even
recognizable

I Initially we proved this with Diagonalization
I Usually we prove this using reduction

I If A is undecidable/unrecognizable, and A ≤M B ,
then B is undecidable/unrecognizable

I Is there an alternative (perhaps easier) way to
prove these results?

4 / 41

Recall

I Certain problems are not decidable, or even
recognizable

I Initially we proved this with Diagonalization
I Usually we prove this using reduction

I If A is undecidable/unrecognizable, and A ≤M B ,
then B is undecidable/unrecognizable

I Is there an alternative (perhaps easier) way to
prove these results?

4 / 41

Today’s goals

I Understand how to construct a self-reproducing
Turing machine

I Describe Turing machines that analyze (and
contradict) their own behavior

I Use the recursion theorem for concise
impossiblity proofs

5 / 41

Today’s goals

I Understand how to construct a self-reproducing
Turing machine

I Describe Turing machines that analyze (and
contradict) their own behavior

I Use the recursion theorem for concise
impossiblity proofs

5 / 41

Today’s goals

I Understand how to construct a self-reproducing
Turing machine

I Describe Turing machines that analyze (and
contradict) their own behavior

I Use the recursion theorem for concise
impossiblity proofs

5 / 41

Today’s goals

I Understand how to construct a self-reproducing
Turing machine

I Describe Turing machines that analyze (and
contradict) their own behavior

I Use the recursion theorem for concise
impossiblity proofs

5 / 41

Self-reproducing robots

I Can we build a robot that builds another robot?

I Can we build a robot that builds another
robot-building robot?

I Can we build a robot-building robot that builds
an identical robot-building robot?

6 / 41

Self-reproducing robots

I Can we build a robot that builds another robot?

I Can we build a robot that builds another
robot-building robot?

I Can we build a robot-building robot that builds
an identical robot-building robot?

6 / 41

Self-reproducing robots

I Can we build a robot that builds another robot?

I Can we build a robot that builds another
robot-building robot?

I Can we build a robot-building robot that builds
an identical robot-building robot?

6 / 41

Self-reproducing robots

I Can we build a robot that builds another robot?

I Can we build a robot that builds another
robot-building robot?

I Can we build a robot-building robot that builds
an identical robot-building robot?

6 / 41

Self-reproducing programs

I Can we build write a robot program that builds
another robot program?

I Can we build write a robot program that builds
another robot-building robot program-building
program?

I Can we build a robot-building robot
program-building program that builds an
identical robot-building robot program-building
program?

7 / 41

Self-reproducing programs

I Can we build write a robot program that builds
another robot program?

I Can we build write a robot program that builds
another robot-building robot program-building
program?

I Can we build a robot-building robot
program-building program that builds an
identical robot-building robot program-building
program?

7 / 41

Self-reproducing programs

I Can we build write a robot program that builds
another robot program?

I Can we build write a robot program that builds
another robot-building robot program-building
program?

I Can we build a robot-building robot
program-building program that builds an
identical robot-building robot program-building
program?

7 / 41

Self-reproducing programs

I Can we build write a robot program that builds
another robot program?

I Can we build write a robot program that builds
another robot-building robot program-building
program?

I Can we build a robot-building robot
program-building program that builds an
identical robot-building robot program-building
program?

7 / 41

Statement of the recursion theorem

The recursion theorem:

1. There exists a Turing machine that prints out
its own description

2. A Turing machine can be programmed to
obtain and then analyze its own description.

We will prove both parts by construction.

I In doing so, we will see why the simplicity of
the TM model can be convenient!

8 / 41

Statement of the recursion theorem

The recursion theorem:

1. There exists a Turing machine that prints out
its own description

2. A Turing machine can be programmed to
obtain and then analyze its own description.

We will prove both parts by construction.

I In doing so, we will see why the simplicity of
the TM model can be convenient!

8 / 41

Statement of the recursion theorem

The recursion theorem:

1. There exists a Turing machine that prints out
its own description

2. A Turing machine can be programmed to
obtain and then analyze its own description.

We will prove both parts by construction.

I In doing so, we will see why the simplicity of
the TM model can be convenient!

8 / 41

Statement of the recursion theorem

The recursion theorem:

1. There exists a Turing machine that prints out
its own description

2. A Turing machine can be programmed to
obtain and then analyze its own description.

We will prove both parts by construction.

I In doing so, we will see why the simplicity of
the TM model can be convenient!

8 / 41

Statement of the recursion theorem

The recursion theorem:

1. There exists a Turing machine that prints out
its own description

2. A Turing machine can be programmed to
obtain and then analyze its own description.

We will prove both parts by construction.

I In doing so, we will see why the simplicity of
the TM model can be convenient!

8 / 41

Statement of the recursion theorem

The recursion theorem:

1. There exists a Turing machine that prints out
its own description

2. A Turing machine can be programmed to
obtain and then analyze its own description.

We will prove both parts by construction.

I In doing so, we will see why the simplicity of
the TM model can be convenient!

8 / 41

Idea behind a self-reproducing programs

Print the following sentence twice, the second time
in quotes
”Print the following sentence twice, the second time
in quotes”

9 / 41

Review of notation

I If M is a Turing machine, then 〈M〉 refers to
the string description of M

I Can think of 〈M〉 as the source code, and M is
the executable file

I Think back to the first two programming
assignments

I On the first assignment, you read a string
description 〈D〉 of a DFA and parsed it into an
actual DFA object D

I On the second assignment, you read a string
description 〈N〉 of an NFA, converted it into an
equivalent DFA object D, and output a string
description 〈D〉

10 / 41

Review of notation
I If M is a Turing machine, then 〈M〉 refers to

the string description of M

I Can think of 〈M〉 as the source code, and M is
the executable file

I Think back to the first two programming
assignments

I On the first assignment, you read a string
description 〈D〉 of a DFA and parsed it into an
actual DFA object D

I On the second assignment, you read a string
description 〈N〉 of an NFA, converted it into an
equivalent DFA object D, and output a string
description 〈D〉

10 / 41

Review of notation
I If M is a Turing machine, then 〈M〉 refers to

the string description of M

I Can think of 〈M〉 as the source code, and M is
the executable file

I Think back to the first two programming
assignments

I On the first assignment, you read a string
description 〈D〉 of a DFA and parsed it into an
actual DFA object D

I On the second assignment, you read a string
description 〈N〉 of an NFA, converted it into an
equivalent DFA object D, and output a string
description 〈D〉

10 / 41

Review of notation
I If M is a Turing machine, then 〈M〉 refers to

the string description of M

I Can think of 〈M〉 as the source code, and M is
the executable file

I Think back to the first two programming
assignments

I On the first assignment, you read a string
description 〈D〉 of a DFA and parsed it into an
actual DFA object D

I On the second assignment, you read a string
description 〈N〉 of an NFA, converted it into an
equivalent DFA object D, and output a string
description 〈D〉

10 / 41

Review of notation
I If M is a Turing machine, then 〈M〉 refers to

the string description of M

I Can think of 〈M〉 as the source code, and M is
the executable file

I Think back to the first two programming
assignments
I On the first assignment, you read a string

description 〈D〉 of a DFA and parsed it into an
actual DFA object D

I On the second assignment, you read a string
description 〈N〉 of an NFA, converted it into an
equivalent DFA object D, and output a string
description 〈D〉

10 / 41

Review of notation
I If M is a Turing machine, then 〈M〉 refers to

the string description of M

I Can think of 〈M〉 as the source code, and M is
the executable file

I Think back to the first two programming
assignments
I On the first assignment, you read a string

description 〈D〉 of a DFA and parsed it into an
actual DFA object D

I On the second assignment, you read a string
description 〈N〉 of an NFA, converted it into an
equivalent DFA object D, and output a string
description 〈D〉

10 / 41

Building blocks of our self-reproducing
program

To construct a Turing machine that prints out its
own description, we will split the program up into
two sub-machines Q and P〈Q〉

I Machine Q takes an input string w and creates
a machine Pw that always prints out the same
string w

I Machine P〈Q〉 is a Turing machine that ignores
its input and always prints out 〈Q〉, i.e. a
description of the machine Q

11 / 41

Building blocks of our self-reproducing
program

To construct a Turing machine that prints out its
own description, we will split the program up into
two sub-machines Q and P〈Q〉

I Machine Q takes an input string w and creates
a machine Pw that always prints out the same
string w

I Machine P〈Q〉 is a Turing machine that ignores
its input and always prints out 〈Q〉, i.e. a
description of the machine Q

11 / 41

Building blocks of our self-reproducing
program

To construct a Turing machine that prints out its
own description, we will split the program up into
two sub-machines Q and P〈Q〉
I Machine Q takes an input string w and creates

a machine Pw that always prints out the same
string w

I Machine P〈Q〉 is a Turing machine that ignores
its input and always prints out 〈Q〉, i.e. a
description of the machine Q

11 / 41

Building blocks of our self-reproducing
program

To construct a Turing machine that prints out its
own description, we will split the program up into
two sub-machines Q and P〈Q〉
I Machine Q takes an input string w and creates

a machine Pw that always prints out the same
string w

I Machine P〈Q〉 is a Turing machine that ignores
its input and always prints out 〈Q〉, i.e. a
description of the machine Q

11 / 41

Machines that only print one string

12 / 41

Machines that only print one string

Let Pw be a Turing machine that erases whatever is
on the tape and prints out string w .

I w is a constant that we decide on ahead of
time

I Can a human construct this machine?

I Can we write a computer program to construct
this machine?

13 / 41

Machines that only print one string

Let Pw be a Turing machine that erases whatever is
on the tape and prints out string w .

I w is a constant that we decide on ahead of
time

I Can a human construct this machine?

I Can we write a computer program to construct
this machine?

13 / 41

Machines that only print one string

Let Pw be a Turing machine that erases whatever is
on the tape and prints out string w .

I w is a constant that we decide on ahead of
time

I Can a human construct this machine?

I Can we write a computer program to construct
this machine?

13 / 41

Machines that only print one string

Let Pw be a Turing machine that erases whatever is
on the tape and prints out string w .

I w is a constant that we decide on ahead of
time

I Can a human construct this machine?

I Can we write a computer program to construct
this machine?

13 / 41

Machines that only print one string

Let Pw be a Turing machine that erases whatever is
on the tape and prints out string w .

I w is a constant that we decide on ahead of
time

I Can a human construct this machine?

I Can we write a computer program to construct
this machine?

13 / 41

Machines that create single-string
machines

Let q(w) = 〈Pw〉. That is, the function q takes as
input a string w . It outputs the description of a
Turing machine Pw that always prints out the string
w .

I Is q a Turing-computable function?

I If you understand what q is doing and convince
yourself that q is computable, then the proof of
the recursion theorem will be straightforward

14 / 41

Machines that create single-string
machines

Let q(w) = 〈Pw〉. That is, the function q takes as
input a string w . It outputs the description of a
Turing machine Pw that always prints out the string
w .

I Is q a Turing-computable function?

I If you understand what q is doing and convince
yourself that q is computable, then the proof of
the recursion theorem will be straightforward

14 / 41

Machines that create single-string
machines

Let q(w) = 〈Pw〉. That is, the function q takes as
input a string w . It outputs the description of a
Turing machine Pw that always prints out the string
w .

I Is q a Turing-computable function?

I If you understand what q is doing and convince
yourself that q is computable, then the proof of
the recursion theorem will be straightforward

14 / 41

Machines that create single-string
machines

Let q(w) = 〈Pw〉. That is, the function q takes as
input a string w . It outputs the description of a
Turing machine Pw that always prints out the string
w .

I Is q a Turing-computable function?

I If you understand what q is doing and convince
yourself that q is computable, then the proof of
the recursion theorem will be straightforward

14 / 41

Machines that create single-string
machines

I Consider the Turing machine Pcomputability

ignores its input and always prints out the same
string “computability”

I Can we construct a machine Qcomputability that
prints out 〈Pcomputability〉?

I Yes!
I We can treat 〈Pcomputability〉 like any other

pre-determined string w

15 / 41

Machines that create single-string
machines

I Consider the Turing machine Pcomputability

ignores its input and always prints out the same
string “computability”

I Can we construct a machine Qcomputability that
prints out 〈Pcomputability〉?

I Yes!
I We can treat 〈Pcomputability〉 like any other

pre-determined string w

15 / 41

Machines that create single-string
machines

I Consider the Turing machine Pcomputability

ignores its input and always prints out the same
string “computability”

I Can we construct a machine Qcomputability that
prints out 〈Pcomputability〉?

I Yes!
I We can treat 〈Pcomputability〉 like any other

pre-determined string w

15 / 41

Machines that create single-string
machines

I Consider the Turing machine Pcomputability

ignores its input and always prints out the same
string “computability”

I Can we construct a machine Qcomputability that
prints out 〈Pcomputability〉?
I Yes!

I We can treat 〈Pcomputability〉 like any other
pre-determined string w

15 / 41

Machines that create single-string
machines

I Consider the Turing machine Pcomputability

ignores its input and always prints out the same
string “computability”

I Can we construct a machine Qcomputability that
prints out 〈Pcomputability〉?
I Yes!
I We can treat 〈Pcomputability〉 like any other

pre-determined string w

15 / 41

Machines that create single-string
machines

I Consider the Turing machine Precursion ignores
its input and always prints out the same string
“recursion”

I Can we construct a machine Qrecursion that
prints out 〈Precursion〉?

I Yes!
I It’s just like the last slide. We use the string

“recursion” instead of the string “computability”

16 / 41

Machines that create single-string
machines

I Consider the Turing machine Precursion ignores
its input and always prints out the same string
“recursion”

I Can we construct a machine Qrecursion that
prints out 〈Precursion〉?

I Yes!
I It’s just like the last slide. We use the string

“recursion” instead of the string “computability”

16 / 41

Machines that create single-string
machines

I Consider the Turing machine Precursion ignores
its input and always prints out the same string
“recursion”

I Can we construct a machine Qrecursion that
prints out 〈Precursion〉?
I Yes!

I It’s just like the last slide. We use the string
“recursion” instead of the string “computability”

16 / 41

Machines that create single-string
machines

I Consider the Turing machine Precursion ignores
its input and always prints out the same string
“recursion”

I Can we construct a machine Qrecursion that
prints out 〈Precursion〉?
I Yes!
I It’s just like the last slide. We use the string

“recursion” instead of the string “computability”

16 / 41

Machines that create single-string
machines

I Can we construct a machine Qw that prints out
〈Pw〉 for any arbitrary string w?

I Yes!
I It’s just like the last two slides. Instead of the

string “recursion” or “computability”, we
substitute our string of choice w

17 / 41

Machines that create single-string
machines

I Can we construct a machine Qw that prints out
〈Pw〉 for any arbitrary string w?
I Yes!

I It’s just like the last two slides. Instead of the
string “recursion” or “computability”, we
substitute our string of choice w

17 / 41

Machines that create single-string
machines

I Can we construct a machine Qw that prints out
〈Pw〉 for any arbitrary string w?
I Yes!
I It’s just like the last two slides. Instead of the

string “recursion” or “computability”, we
substitute our string of choice w

17 / 41

Machines that create single-string
machines

I Can we construct a machine Q that takes as
input w and outputs 〈Pw〉, the description of
the machine Pw?

I Yes!

I We know what 99% of the program Pw will
look like

I If we are given w , we know how to finish
writing the program

I Substitute in w for the part where P prints out its
output string

I We basically convert w from a constant to a
parameter of the method Q

18 / 41

Machines that create single-string
machines

I Can we construct a machine Q that takes as
input w and outputs 〈Pw〉, the description of
the machine Pw?

I Yes!

I We know what 99% of the program Pw will
look like

I If we are given w , we know how to finish
writing the program

I Substitute in w for the part where P prints out its
output string

I We basically convert w from a constant to a
parameter of the method Q

18 / 41

Machines that create single-string
machines

I Can we construct a machine Q that takes as
input w and outputs 〈Pw〉, the description of
the machine Pw?

I Yes!

I We know what 99% of the program Pw will
look like

I If we are given w , we know how to finish
writing the program

I Substitute in w for the part where P prints out its
output string

I We basically convert w from a constant to a
parameter of the method Q

18 / 41

Machines that create single-string
machines

I Can we construct a machine Q that takes as
input w and outputs 〈Pw〉, the description of
the machine Pw?

I Yes!

I We know what 99% of the program Pw will
look like

I If we are given w , we know how to finish
writing the program

I Substitute in w for the part where P prints out its
output string

I We basically convert w from a constant to a
parameter of the method Q

18 / 41

Machines that create single-string
machines

I Can we construct a machine Q that takes as
input w and outputs 〈Pw〉, the description of
the machine Pw?

I Yes!

I We know what 99% of the program Pw will
look like

I If we are given w , we know how to finish
writing the program
I Substitute in w for the part where P prints out its

output string

I We basically convert w from a constant to a
parameter of the method Q

18 / 41

Machines that create single-string
machines

I Can we construct a machine Q that takes as
input w and outputs 〈Pw〉, the description of
the machine Pw?

I Yes!

I We know what 99% of the program Pw will
look like

I If we are given w , we know how to finish
writing the program
I Substitute in w for the part where P prints out its

output string
I We basically convert w from a constant to a

parameter of the method Q

18 / 41

A self-reproducing program

Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.

I Q takes as input 〈M〉, a Turing machine
description, and does the following:

1. Compute 〈P〈M〉〉, i.e. a description of a machine
that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.

I Q takes as input 〈M〉, a Turing machine
description, and does the following:

1. Compute 〈P〈M〉〉, i.e. a description of a machine
that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.
I Q takes as input 〈M〉, a Turing machine

description, and does the following:

1. Compute 〈P〈M〉〉, i.e. a description of a machine
that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.
I Q takes as input 〈M〉, a Turing machine

description, and does the following:
1. Compute 〈P〈M〉〉, i.e. a description of a machine

that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.
I Q takes as input 〈M〉, a Turing machine

description, and does the following:
1. Compute 〈P〈M〉〉, i.e. a description of a machine

that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.
I Q takes as input 〈M〉, a Turing machine

description, and does the following:
1. Compute 〈P〈M〉〉, i.e. a description of a machine

that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.
I Q takes as input 〈M〉, a Turing machine

description, and does the following:
1. Compute 〈P〈M〉〉, i.e. a description of a machine

that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
Now we are ready to describe the machine SELF, a
machine which prints out its own description. SELF
consists of two sub-machines, P〈Q〉 and Q.
I Q takes as input 〈M〉, a Turing machine

description, and does the following:
1. Compute 〈P〈M〉〉, i.e. a description of a machine

that ignores its input and prints out the string 〈M〉
(where 〈M〉 is also a Turing machine description)

2. Combine 〈P〈M〉〉 and 〈M〉 into a single machine M∗

3. Print out 〈M∗〉 and halt

I P〈Q〉 ignores whatever input is on the tape and
prints out the description of machine Q.

SELF first runs P〈Q〉, and then runs Q. What
happens?

19 / 41

A self-reproducing program
SELF first runs P〈Q〉, and then runs Q. What
happens?

1. Machine P〈Q〉 prints 〈Q〉 on the tape, and
passes control to Q.

2. Machine Q reads 〈Q〉 on the tape. That is, it
encounters its own description, which was
produced by P〈Q〉

3. Machine Q constructs the machine Pw , which
in this case is P〈Q〉.

4. Machine Q then combines the machines 〈P〈Q〉〉
and 〈Q〉 into one machine M∗

Does that last step loop familiar?

20 / 41

A self-reproducing program
SELF first runs P〈Q〉, and then runs Q. What
happens?

1. Machine P〈Q〉 prints 〈Q〉 on the tape, and
passes control to Q.

2. Machine Q reads 〈Q〉 on the tape. That is, it
encounters its own description, which was
produced by P〈Q〉

3. Machine Q constructs the machine Pw , which
in this case is P〈Q〉.

4. Machine Q then combines the machines 〈P〈Q〉〉
and 〈Q〉 into one machine M∗

Does that last step loop familiar?

20 / 41

A self-reproducing program
SELF first runs P〈Q〉, and then runs Q. What
happens?

1. Machine P〈Q〉 prints 〈Q〉 on the tape, and
passes control to Q.

2. Machine Q reads 〈Q〉 on the tape. That is, it
encounters its own description, which was
produced by P〈Q〉

3. Machine Q constructs the machine Pw , which
in this case is P〈Q〉.

4. Machine Q then combines the machines 〈P〈Q〉〉
and 〈Q〉 into one machine M∗

Does that last step loop familiar?

20 / 41

A self-reproducing program
SELF first runs P〈Q〉, and then runs Q. What
happens?

1. Machine P〈Q〉 prints 〈Q〉 on the tape, and
passes control to Q.

2. Machine Q reads 〈Q〉 on the tape. That is, it
encounters its own description, which was
produced by P〈Q〉

3. Machine Q constructs the machine Pw , which
in this case is P〈Q〉.

4. Machine Q then combines the machines 〈P〈Q〉〉
and 〈Q〉 into one machine M∗

Does that last step loop familiar?

20 / 41

A self-reproducing program
SELF first runs P〈Q〉, and then runs Q. What
happens?

1. Machine P〈Q〉 prints 〈Q〉 on the tape, and
passes control to Q.

2. Machine Q reads 〈Q〉 on the tape. That is, it
encounters its own description, which was
produced by P〈Q〉

3. Machine Q constructs the machine Pw , which
in this case is P〈Q〉.

4. Machine Q then combines the machines 〈P〈Q〉〉
and 〈Q〉 into one machine M∗

Does that last step loop familiar?

20 / 41

A Self-reproducing program

SELF first runs P〈Q〉, and then runs Q. What
happens?

I SELF produces a machine 〈M∗〉 which is a
combination of P〈Q〉 and Q

I But SELF also of a combination of P〈Q〉 and
Q!

I SELF has reproduced its own description!

21 / 41

A Self-reproducing program

SELF first runs P〈Q〉, and then runs Q. What
happens?

I SELF produces a machine 〈M∗〉 which is a
combination of P〈Q〉 and Q

I But SELF also of a combination of P〈Q〉 and
Q!

I SELF has reproduced its own description!

21 / 41

A Self-reproducing program

SELF first runs P〈Q〉, and then runs Q. What
happens?

I SELF produces a machine 〈M∗〉 which is a
combination of P〈Q〉 and Q

I But SELF also of a combination of P〈Q〉 and
Q!

I SELF has reproduced its own description!

21 / 41

A Self-reproducing program

22 / 41

A Self-reproducing program

22 / 41

A Self-reproducing program

22 / 41

A Self-reproducing program

22 / 41

A Self-reproducing program

22 / 41

Self-analyzing programs

I Let T be a Turing machine that computes a
function t : Σ∗ × Σ∗ → Σ∗.

I T represents a machine that receives a machine
description as one of its inputs and analyzes that
machine

I There is a Turing machine R that computes a
function r : Σ∗ → Σ∗, where for every w

r(w) = t(〈R〉,w)

I R performs the same analysis as T does, but it
analyzes its own description rather than taking a
machine description as one of its inputs

23 / 41

Self-analyzing programs

I Let T be a Turing machine that computes a
function t : Σ∗ × Σ∗ → Σ∗.

I T represents a machine that receives a machine
description as one of its inputs and analyzes that
machine

I There is a Turing machine R that computes a
function r : Σ∗ → Σ∗, where for every w

r(w) = t(〈R〉,w)

I R performs the same analysis as T does, but it
analyzes its own description rather than taking a
machine description as one of its inputs

23 / 41

Self-analyzing programs

I Let T be a Turing machine that computes a
function t : Σ∗ × Σ∗ → Σ∗.
I T represents a machine that receives a machine

description as one of its inputs and analyzes that
machine

I There is a Turing machine R that computes a
function r : Σ∗ → Σ∗, where for every w

r(w) = t(〈R〉,w)

I R performs the same analysis as T does, but it
analyzes its own description rather than taking a
machine description as one of its inputs

23 / 41

Self-analyzing programs

I Let T be a Turing machine that computes a
function t : Σ∗ × Σ∗ → Σ∗.
I T represents a machine that receives a machine

description as one of its inputs and analyzes that
machine

I There is a Turing machine R that computes a
function r : Σ∗ → Σ∗, where for every w

r(w) = t(〈R〉,w)

I R performs the same analysis as T does, but it
analyzes its own description rather than taking a
machine description as one of its inputs

23 / 41

Self-analyzing programs

I Let T be a Turing machine that computes a
function t : Σ∗ × Σ∗ → Σ∗.
I T represents a machine that receives a machine

description as one of its inputs and analyzes that
machine

I There is a Turing machine R that computes a
function r : Σ∗ → Σ∗, where for every w

r(w) = t(〈R〉,w)
I R performs the same analysis as T does, but it

analyzes its own description rather than taking a
machine description as one of its inputs

23 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .

I Instead of erasing whatever input it gets on the
tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .

I Instead of erasing whatever input it gets on the
tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .
I Instead of erasing whatever input it gets on the

tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .
I Instead of erasing whatever input it gets on the

tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .
I Instead of erasing whatever input it gets on the

tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .
I Instead of erasing whatever input it gets on the

tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs
We construct R in three parts: P〈QT 〉,Q,T

1. P〈QT 〉 prints out the description 〈QT 〉, a
combination of machines Q and T .
I Instead of erasing whatever input it gets on the

tape, it writes 〈QT 〉 following its input w

2. Q reads 〈QT 〉 on the tape and uses this to
construct P〈QT 〉.

3. Q then combines 〈P〈QT 〉〉, 〈Q〉, and 〈T 〉 into
one machine 〈M∗〉 = 〈P〈QT 〉QT 〉 = 〈R〉

4. Q writes 〈R〉 onto the tape (again, following
w) and passes control to T

5. T reads w and 〈R〉 on. the tape and computes
t(〈R〉,w)

24 / 41

Self-analyzing programs

25 / 41

Self-analyzing programs

25 / 41

Self-analyzing programs

25 / 41

Self-analyzing programs

25 / 41

Self-analyzing programs

25 / 41

Self-analyzing programs

25 / 41

Self-analyzing programs

I When constructing a Turing machine M , you
can include the command ”Obtain M’s
description 〈M〉” as part of the pseudocode

I Whatever you were going to do with 〈M〉, the
recursion theorem tells us that there exists a
machine that finds a way to put its own
description on the tape before processing that
description

26 / 41

Self-analyzing programs

I When constructing a Turing machine M , you
can include the command ”Obtain M’s
description 〈M〉” as part of the pseudocode

I Whatever you were going to do with 〈M〉, the
recursion theorem tells us that there exists a
machine that finds a way to put its own
description on the tape before processing that
description

26 / 41

Self-analyzing programs

I When constructing a Turing machine M , you
can include the command ”Obtain M’s
description 〈M〉” as part of the pseudocode

I Whatever you were going to do with 〈M〉, the
recursion theorem tells us that there exists a
machine that finds a way to put its own
description on the tape before processing that
description

26 / 41

HALT is undecidable: another proof

Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉

3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉

4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop

I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof
Theorem: HALT = {〈M ,w〉|M halts on w} is
undecidable

Proof: AFSOC machine H decides HALT. Create
the following machine M :

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run H on 〈M ,w〉
4. “Do the opposite”

I If H accepts 〈M ,w〉, go into a loop
I If H rejects 〈M ,w〉, immediately halt

M halts on input w if H says it should loop, and
loops if H says it should halt.

27 / 41

HALT is undecidable: another proof

28 / 41

Undecidability proofs using the recursion
theorem

We can use the following recipe to prove that a
language L is undecidable

1. AFSOC a machine D can decide L

2. Create a machine M that obtains its own
description, uses D to analyze itself, and “does
the opposite” of what it should

3. Conclude that D is not deciding L correctly

29 / 41

Undecidability proofs using the recursion
theorem

We can use the following recipe to prove that a
language L is undecidable

1. AFSOC a machine D can decide L

2. Create a machine M that obtains its own
description, uses D to analyze itself, and “does
the opposite” of what it should

3. Conclude that D is not deciding L correctly

29 / 41

Undecidability proofs using the recursion
theorem

We can use the following recipe to prove that a
language L is undecidable

1. AFSOC a machine D can decide L

2. Create a machine M that obtains its own
description, uses D to analyze itself, and “does
the opposite” of what it should

3. Conclude that D is not deciding L correctly

29 / 41

Undecidability proofs using the recursion
theorem

We can use the following recipe to prove that a
language L is undecidable

1. AFSOC a machine D can decide L

2. Create a machine M that obtains its own
description, uses D to analyze itself, and “does
the opposite” of what it should

3. Conclude that D is not deciding L correctly

29 / 41

Undecidability proofs using the recursion
theorem

We can use the following recipe to prove that a
language L is undecidable

1. AFSOC a machine D can decide L

2. Create a machine M that obtains its own
description, uses D to analyze itself, and “does
the opposite” of what it should

3. Conclude that D is not deciding L correctly

29 / 41

Recursion theorem recipe

30 / 41

ATM is undecidable: an alternate proof

Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable
Let’s try proving this using the recursion theorem
Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem
Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable
Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉

3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉

4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject

I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof
Theorem: ATM = {〈M ,w〉|w ∈ L(M)} is
undecidable

Let’s try proving this using the recursion theorem

Proof: AFSOC machine A decides ATM. Create a
machine M that does the following:

1. M takes a string w as input
2. Obtain its own description 〈M〉
3. Run A on 〈M ,w〉
4. “Do the opposite”

I If A accepts 〈M ,w〉, reject
I If A rejects 〈M ,w〉, accept

M accepts w if A says it should reject, and rejects if
A says it should accept.

31 / 41

ATM is undecidable: an alternate proof

32 / 41

The language REGTM

Consider the following language:

REGTM = {〈M〉|L(M) is regular}

I We receive a TM description 〈M〉 as input
I We seek to determine if M recognizes a regular

language

I “Can this TM be converted to a DFA?”

33 / 41

The language REGTM

Consider the following language:

REGTM = {〈M〉|L(M) is regular}

I We receive a TM description 〈M〉 as input
I We seek to determine if M recognizes a regular

language

I “Can this TM be converted to a DFA?”

33 / 41

The language REGTM

Consider the following language:

REGTM = {〈M〉|L(M) is regular}

I We receive a TM description 〈M〉 as input

I We seek to determine if M recognizes a regular
language

I “Can this TM be converted to a DFA?”

33 / 41

The language REGTM

Consider the following language:

REGTM = {〈M〉|L(M) is regular}

I We receive a TM description 〈M〉 as input
I We seek to determine if M recognizes a regular

language

I “Can this TM be converted to a DFA?”

33 / 41

The language REGTM

Consider the following language:

REGTM = {〈M〉|L(M) is regular}

I We receive a TM description 〈M〉 as input
I We seek to determine if M recognizes a regular

language
I “Can this TM be converted to a DFA?”

33 / 41

REGTM is undecidable

Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

I Hint 1: Use the recursion theorem

I Hint 2: Make a machine that is regular when it
shouldn’t be, and vice-versa

34 / 41

REGTM is undecidable

Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

I Hint 1: Use the recursion theorem

I Hint 2: Make a machine that is regular when it
shouldn’t be, and vice-versa

34 / 41

REGTM is undecidable

Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

I Hint 1: Use the recursion theorem

I Hint 2: Make a machine that is regular when it
shouldn’t be, and vice-versa

34 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉

3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉

4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable
Theorem: REGTM = {〈M〉|L(M) is regular} is
undecidable

Proof: AFSOC machine R decides REGTM.
Construct a machine M that does the following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run R on 〈M〉
4. “Do the opposite”

I If R accepts 〈M〉, simulate a machine that
recognizes 0n1n

I If R accepts 〈M〉, simulate a machine that
recognizes 0∗1∗

35 / 41

REGTM is undecidable

I If R says M is regular, M recognizes 0n1n - a
non-regular language.

I If M says A is not regular, it recognizes 0∗1∗ -
a regular language.

I Thus, R is not deciding REGTM correctly

36 / 41

REGTM is undecidable

I If R says M is regular, M recognizes 0n1n - a
non-regular language.

I If M says A is not regular, it recognizes 0∗1∗ -
a regular language.

I Thus, R is not deciding REGTM correctly

36 / 41

REGTM is undecidable

I If R says M is regular, M recognizes 0n1n - a
non-regular language.

I If M says A is not regular, it recognizes 0∗1∗ -
a regular language.

I Thus, R is not deciding REGTM correctly

36 / 41

REGTM is undecidable

37 / 41

Minimal Turing machines

I Let M be a Turing machine, with string
description 〈M〉.

I We say M is minimal if there is no Turing
machine M2 such that:

1. L(M) = L(M2)
2. |〈M2〉| < |〈M〉|

i.e., there is no machine with a shorter description
than M that recognizes the same language.

38 / 41

Minimal Turing machines

I Let M be a Turing machine, with string
description 〈M〉.

I We say M is minimal if there is no Turing
machine M2 such that:

1. L(M) = L(M2)
2. |〈M2〉| < |〈M〉|

i.e., there is no machine with a shorter description
than M that recognizes the same language.

38 / 41

Minimal Turing machines

I Let M be a Turing machine, with string
description 〈M〉.

I We say M is minimal if there is no Turing
machine M2 such that:

1. L(M) = L(M2)
2. |〈M2〉| < |〈M〉|

i.e., there is no machine with a shorter description
than M that recognizes the same language.

38 / 41

Minimal Turing machines

I Let M be a Turing machine, with string
description 〈M〉.

I We say M is minimal if there is no Turing
machine M2 such that:

1. L(M) = L(M2)

2. |〈M2〉| < |〈M〉|
i.e., there is no machine with a shorter description
than M that recognizes the same language.

38 / 41

Minimal Turing machines

I Let M be a Turing machine, with string
description 〈M〉.

I We say M is minimal if there is no Turing
machine M2 such that:

1. L(M) = L(M2)
2. |〈M2〉| < |〈M〉|

i.e., there is no machine with a shorter description
than M that recognizes the same language.

38 / 41

Minimal Turing machines

I Let M be a Turing machine, with string
description 〈M〉.

I We say M is minimal if there is no Turing
machine M2 such that:

1. L(M) = L(M2)
2. |〈M2〉| < |〈M〉|

i.e., there is no machine with a shorter description
than M that recognizes the same language.

38 / 41

The language MINTM

MINTM = {〈M〉|M is a minimal TM}

I We receive a TM description/source code 〈M〉
I We want to know if M is minimal

I “Can this source code be rewritten more
concisely?”

39 / 41

The language MINTM

MINTM = {〈M〉|M is a minimal TM}

I We receive a TM description/source code 〈M〉
I We want to know if M is minimal

I “Can this source code be rewritten more
concisely?”

39 / 41

The language MINTM

MINTM = {〈M〉|M is a minimal TM}

I We receive a TM description/source code 〈M〉

I We want to know if M is minimal

I “Can this source code be rewritten more
concisely?”

39 / 41

The language MINTM

MINTM = {〈M〉|M is a minimal TM}

I We receive a TM description/source code 〈M〉
I We want to know if M is minimal

I “Can this source code be rewritten more
concisely?”

39 / 41

The language MINTM

MINTM = {〈M〉|M is a minimal TM}

I We receive a TM description/source code 〈M〉
I We want to know if M is minimal

I “Can this source code be rewritten more
concisely?”

39 / 41

MINTM is not recursively enumerable
Theorem: MINTM = {〈M〉|M is a minimal TM} is
not RE

Proof: AFSOC some enumerator E enumerates
MINTM. Create a machine M that does the
following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run E until it lists a machine 〈M2〉 such that
|〈M〉| < |〈M2〉| (i.e. a machine with a longer
description)

4. Simulate M2 on w

40 / 41

MINTM is not recursively enumerable
Theorem: MINTM = {〈M〉|M is a minimal TM} is
not RE

Proof: AFSOC some enumerator E enumerates
MINTM. Create a machine M that does the
following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run E until it lists a machine 〈M2〉 such that
|〈M〉| < |〈M2〉| (i.e. a machine with a longer
description)

4. Simulate M2 on w

40 / 41

MINTM is not recursively enumerable
Theorem: MINTM = {〈M〉|M is a minimal TM} is
not RE

Proof: AFSOC some enumerator E enumerates
MINTM. Create a machine M that does the
following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run E until it lists a machine 〈M2〉 such that
|〈M〉| < |〈M2〉| (i.e. a machine with a longer
description)

4. Simulate M2 on w

40 / 41

MINTM is not recursively enumerable
Theorem: MINTM = {〈M〉|M is a minimal TM} is
not RE

Proof: AFSOC some enumerator E enumerates
MINTM. Create a machine M that does the
following:

1. M takes a string w as input

2. Obtain its own description 〈M〉

3. Run E until it lists a machine 〈M2〉 such that
|〈M〉| < |〈M2〉| (i.e. a machine with a longer
description)

4. Simulate M2 on w

40 / 41

MINTM is not recursively enumerable
Theorem: MINTM = {〈M〉|M is a minimal TM} is
not RE

Proof: AFSOC some enumerator E enumerates
MINTM. Create a machine M that does the
following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run E until it lists a machine 〈M2〉 such that
|〈M〉| < |〈M2〉| (i.e. a machine with a longer
description)

4. Simulate M2 on w

40 / 41

MINTM is not recursively enumerable
Theorem: MINTM = {〈M〉|M is a minimal TM} is
not RE

Proof: AFSOC some enumerator E enumerates
MINTM. Create a machine M that does the
following:

1. M takes a string w as input

2. Obtain its own description 〈M〉
3. Run E until it lists a machine 〈M2〉 such that
|〈M〉| < |〈M2〉| (i.e. a machine with a longer
description)

4. Simulate M2 on w

40 / 41

MINTM is not recursively enumerable

I Note that L(M) = L(M2), and |〈M〉| < |〈M2〉|

I But this is not supposed to be possible since
M2 is supposed to be a minimal TM.

I Thus, our enumerator did not enumerate
MINTM correctly.

41 / 41

MINTM is not recursively enumerable

I Note that L(M) = L(M2), and |〈M〉| < |〈M2〉|
I But this is not supposed to be possible since

M2 is supposed to be a minimal TM.

I Thus, our enumerator did not enumerate
MINTM correctly.

41 / 41

MINTM is not recursively enumerable

I Note that L(M) = L(M2), and |〈M〉| < |〈M2〉|
I But this is not supposed to be possible since

M2 is supposed to be a minimal TM.

I Thus, our enumerator did not enumerate
MINTM correctly.

41 / 41

