
Theory of Computation//The
Halting Problem

Arjun Chandrasekhar

1 / 31



Unsolvable Problems

I Can we train the java compiler to detect your
infinite loops before you run your code?

I Can we create the perfect virus detection
software?

I Can we get computers to tell us which
mathematical conjectures are true/false?

2 / 31



Unsolvable Problems

I Can we train the java compiler to detect your
infinite loops before you run your code?

I Can we create the perfect virus detection
software?

I Can we get computers to tell us which
mathematical conjectures are true/false?

2 / 31



Unsolvable Problems

I Can we train the java compiler to detect your
infinite loops before you run your code?

I Can we create the perfect virus detection
software?

I Can we get computers to tell us which
mathematical conjectures are true/false?

2 / 31



Unsolvable Problems

I Can we train the java compiler to detect your
infinite loops before you run your code?

I Can we create the perfect virus detection
software?

I Can we get computers to tell us which
mathematical conjectures are true/false?

2 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument

I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java

I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument

I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java

I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument

I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java

I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument
I If w has even length, output “ACCEPT”

I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java

I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument
I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java

I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument
I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java

I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument
I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java
I Pass the source code as one long string

I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument
I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java
I Pass the source code as one long string
I What will this do?

I This would check if even.java contains an even
number of characters in its source code

3 / 31



Programs taking other programs as input

I Can pass one program description as input to
another program

I Example: Let even.java be a program that
takes an a string w as a command line
argument
I If w has even length, output “ACCEPT”
I Otherwise, output “REJECT”

I We could pass the source code of even.java as
the input to even.java
I Pass the source code as one long string
I What will this do?
I This would check if even.java contains an even

number of characters in its source code

3 / 31



Programs taking other programs as input

I Let strange.java be a program that takes the
name of a java source code file program.java as
input and does the following:

1. Make one long string out of the source code of
program.java

2. Pass this string to even.java
3. If even.java outputs ACCEPT, strange.java outputs

REJECT
4. If even.java outputs REJECT, strange.java outputs

ACCEPT

4 / 31



Programs taking other programs as input

I Let strange.java be a program that takes the
name of a java source code file program.java as
input and does the following:

1. Make one long string out of the source code of
program.java

2. Pass this string to even.java
3. If even.java outputs ACCEPT, strange.java outputs

REJECT
4. If even.java outputs REJECT, strange.java outputs

ACCEPT

4 / 31



Programs taking other programs as input

I Let strange.java be a program that takes the
name of a java source code file program.java as
input and does the following:

1. Make one long string out of the source code of
program.java

2. Pass this string to even.java

3. If even.java outputs ACCEPT, strange.java outputs
REJECT

4. If even.java outputs REJECT, strange.java outputs
ACCEPT

4 / 31



Programs taking other programs as input

I Let strange.java be a program that takes the
name of a java source code file program.java as
input and does the following:

1. Make one long string out of the source code of
program.java

2. Pass this string to even.java
3. If even.java outputs ACCEPT, strange.java outputs

REJECT

4. If even.java outputs REJECT, strange.java outputs
ACCEPT

4 / 31



Programs taking other programs as input

I Let strange.java be a program that takes the
name of a java source code file program.java as
input and does the following:

1. Make one long string out of the source code of
program.java

2. Pass this string to even.java
3. If even.java outputs ACCEPT, strange.java outputs

REJECT
4. If even.java outputs REJECT, strange.java outputs

ACCEPT

4 / 31



Programs taking other programs as input

I Let strange.java be a program that takes the
name of a java source code file program.java as
input and does the following:

1. Make one long string out of the source code of
program.java

2. Pass this string to even.java
3. If even.java outputs ACCEPT, strange.java outputs

REJECT
4. If even.java outputs REJECT, strange.java outputs

ACCEPT

What happens if we pass strange.java as the input
to strange.java?

5 / 31



Programs taking other programs as input

What happens if we pass strange.java as the input
to strange.java?

1. Create a string s out of the source code of
strange.java

2. Pass s as the argument to even.java

3. If even.java outputs ACCEPT, strange.java
outputs REJECT

4. If even.java outputs REJECT, strange.java
outputs ACCEPT

6 / 31



Programs taking other programs as input

What happens if we pass strange.java as the input
to strange.java?

1. Create a string s out of the source code of
strange.java

2. Pass s as the argument to even.java

3. If even.java outputs ACCEPT, strange.java
outputs REJECT

4. If even.java outputs REJECT, strange.java
outputs ACCEPT

6 / 31



Programs taking other programs as input

What happens if we pass strange.java as the input
to strange.java?

1. Create a string s out of the source code of
strange.java

2. Pass s as the argument to even.java

3. If even.java outputs ACCEPT, strange.java
outputs REJECT

4. If even.java outputs REJECT, strange.java
outputs ACCEPT

6 / 31



Programs taking other programs as input

What happens if we pass strange.java as the input
to strange.java?

1. Create a string s out of the source code of
strange.java

2. Pass s as the argument to even.java

3. If even.java outputs ACCEPT, strange.java
outputs REJECT

4. If even.java outputs REJECT, strange.java
outputs ACCEPT

6 / 31



Programs taking other programs as input

What happens if we pass strange.java as the input
to strange.java?

1. Create a string s out of the source code of
strange.java

2. Pass s as the argument to even.java

3. If even.java outputs ACCEPT, strange.java
outputs REJECT

4. If even.java outputs REJECT, strange.java
outputs ACCEPT

6 / 31



Programs taking other programs as input
What happens if we pass strange.java as the input
to strange.java?

1. Create a string s out of the source code of
strange.java

2. Pass s as the argument to even.java

3. If even.java outputs ACCEPT, strange.java
outputs REJECT

4. If even.java outputs REJECT, strange.java
outputs ACCEPT

strange.java checks if its own source code has an
even length

6 / 31



Undecidable Languages

I We are now ready to show that certain
languages are undecidable

I No computer program will EVER solve these
problems

I We will make use of diagonalization, as well as
machines that take other machines as input

I “If we could recognize this language, we could
construct a that machine contradicts every
machine in the world - including itself”

7 / 31



Undecidable Languages

I We are now ready to show that certain
languages are undecidable

I No computer program will EVER solve these
problems

I We will make use of diagonalization, as well as
machines that take other machines as input

I “If we could recognize this language, we could
construct a that machine contradicts every
machine in the world - including itself”

7 / 31



Undecidable Languages

I We are now ready to show that certain
languages are undecidable

I No computer program will EVER solve these
problems

I We will make use of diagonalization, as well as
machines that take other machines as input

I “If we could recognize this language, we could
construct a that machine contradicts every
machine in the world - including itself”

7 / 31



Undecidable Languages

I We are now ready to show that certain
languages are undecidable

I No computer program will EVER solve these
problems

I We will make use of diagonalization, as well as
machines that take other machines as input

I “If we could recognize this language, we could
construct a that machine contradicts every
machine in the world - including itself”

7 / 31



Undecidable Languages

I We are now ready to show that certain
languages are undecidable

I No computer program will EVER solve these
problems

I We will make use of diagonalization, as well as
machines that take other machines as input
I “If we could recognize this language, we could

construct a that machine contradicts every
machine in the world - including itself”

7 / 31



The Halting Problem

Raise your hand if you have ever written an infinite
loop

I Wouldn’t it be nice if the compiler could detect
these ahead of time?

8 / 31



The Halting Problem

Raise your hand if you have ever written an infinite
loop

I Wouldn’t it be nice if the compiler could detect
these ahead of time?

8 / 31



The Halting Problem

Raise your hand if you have ever written an infinite
loop

I Wouldn’t it be nice if the compiler could detect
these ahead of time?

8 / 31



The Halting Problem

Raise your hand if you have ever written an infinite
loop

I Wouldn’t it be nice if the compiler could detect
these ahead of time?

8 / 31



The Halting Problem

Raise your hand if you have ever written an infinite
loop

I Wouldn’t it be nice if the compiler could detect
these ahead of time?

Theorem: It is impossible to write a compiler that
can detect infinite loops with 100% accuracy

8 / 31



The Halting Problem - Proof Idea

Theorem: It is impossible to write a compiler that
can detect infinite loops with 100% accuracy

I Proof idea: if we could do this, we could write
a program that literally contradicts itself

I We will write a program that runs this compiler
on itself and then does the opposite of what it
is “supposed” to do

I Our program will “fool” the compiler, thus
proving the compiler doesn’t actually perform
as advertised

9 / 31



The Halting Problem - Proof Idea

Theorem: It is impossible to write a compiler that
can detect infinite loops with 100% accuracy

I Proof idea: if we could do this, we could write
a program that literally contradicts itself

I We will write a program that runs this compiler
on itself and then does the opposite of what it
is “supposed” to do

I Our program will “fool” the compiler, thus
proving the compiler doesn’t actually perform
as advertised

9 / 31



The Halting Problem - Proof Idea

Theorem: It is impossible to write a compiler that
can detect infinite loops with 100% accuracy

I Proof idea: if we could do this, we could write
a program that literally contradicts itself

I We will write a program that runs this compiler
on itself and then does the opposite of what it
is “supposed” to do

I Our program will “fool” the compiler, thus
proving the compiler doesn’t actually perform
as advertised

9 / 31



The Halting Problem - Starting
Assumption

Assume for sake of contradiction we have a program
called halt.java

I halt.java takes two command line arguments:
program.java and w

I halt.java prints ACCEPT if program.java halts
on input w

I halt.java prints REJECT if program.java goes
into an infinite loop on input w

10 / 31



The Halting Problem - Starting
Assumption

Assume for sake of contradiction we have a program
called halt.java

I halt.java takes two command line arguments:
program.java and w

I halt.java prints ACCEPT if program.java halts
on input w

I halt.java prints REJECT if program.java goes
into an infinite loop on input w

10 / 31



The Halting Problem - Starting
Assumption

Assume for sake of contradiction we have a program
called halt.java

I halt.java takes two command line arguments:
program.java and w

I halt.java prints ACCEPT if program.java halts
on input w

I halt.java prints REJECT if program.java goes
into an infinite loop on input w

10 / 31



The Halting Problem - Starting
Assumption

Assume for sake of contradiction we have a program
called halt.java

I halt.java takes two command line arguments:
program.java and w

I halt.java prints ACCEPT if program.java halts
on input w

I halt.java prints REJECT if program.java goes
into an infinite loop on input w

10 / 31



The Halting Problem - Starting
Assumption

Assume for sake of contradiction we have a program
called halt.java

I halt.java takes two command line arguments:
program.java and w

I halt.java prints ACCEPT if program.java halts
on input w

I halt.java prints REJECT if program.java goes
into an infinite loop on input w

10 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Problem - Strange Program
Let’s create a program called strange.java

1. strange.java takes one command line argument:
program.java

2. strange.java creates a string w out of the
source code of program.java

3. strange.java runs halt.java and passes
〈program.java,w〉 as command line arguments

4. If halt.java prints ACCEPT then strange.java
goes into an infinite loop

5. If halt.java prints REJECT then strange.java
immediately halts

11 / 31



The Halting Program - Counterexample

What does strange.java do if it receives its own
source code strange.java as input?

1. strange.java creates a string w out of the
source code of strange.java

2. strange.java passes 〈strange.java,w〉 to
halt.java

3. If halt.java prints ACCEPT, strange.java goes
into an infinite loop

4. If halt.java prints REJECT, strange.java halts

12 / 31



The Halting Program - Counterexample

What does strange.java do if it receives its own
source code strange.java as input?

1. strange.java creates a string w out of the
source code of strange.java

2. strange.java passes 〈strange.java,w〉 to
halt.java

3. If halt.java prints ACCEPT, strange.java goes
into an infinite loop

4. If halt.java prints REJECT, strange.java halts

12 / 31



The Halting Program - Counterexample

What does strange.java do if it receives its own
source code strange.java as input?

1. strange.java creates a string w out of the
source code of strange.java

2. strange.java passes 〈strange.java,w〉 to
halt.java

3. If halt.java prints ACCEPT, strange.java goes
into an infinite loop

4. If halt.java prints REJECT, strange.java halts

12 / 31



The Halting Program - Counterexample

What does strange.java do if it receives its own
source code strange.java as input?

1. strange.java creates a string w out of the
source code of strange.java

2. strange.java passes 〈strange.java,w〉 to
halt.java

3. If halt.java prints ACCEPT, strange.java goes
into an infinite loop

4. If halt.java prints REJECT, strange.java halts

12 / 31



The Halting Program - Counterexample

What does strange.java do if it receives its own
source code strange.java as input?

1. strange.java creates a string w out of the
source code of strange.java

2. strange.java passes 〈strange.java,w〉 to
halt.java

3. If halt.java prints ACCEPT, strange.java goes
into an infinite loop

4. If halt.java prints REJECT, strange.java halts

12 / 31



The Halting Program - Counterexample

What does strange.java do if it receives its own
source code strange.java as input?

1. strange.java creates a string w out of the
source code of strange.java

2. strange.java passes 〈strange.java,w〉 to
halt.java

3. If halt.java prints ACCEPT, strange.java goes
into an infinite loop

4. If halt.java prints REJECT, strange.java halts

12 / 31



The Halting Problem - Contradiction

I If halt.java says strange.java will halt on its
own source code, strange.java goes into an
infinite loop

I If halt.java says strange.java will loop on its
own source code, strange.java will immediately
halt

I THIS IS A CONTRADICTION!!!

I We conclude that halt.java is not detecting
infinite loops correctly.

13 / 31



The Halting Problem - Contradiction

I If halt.java says strange.java will halt on its
own source code, strange.java goes into an
infinite loop

I If halt.java says strange.java will loop on its
own source code, strange.java will immediately
halt

I THIS IS A CONTRADICTION!!!

I We conclude that halt.java is not detecting
infinite loops correctly.

13 / 31



The Halting Problem - Contradiction

I If halt.java says strange.java will halt on its
own source code, strange.java goes into an
infinite loop

I If halt.java says strange.java will loop on its
own source code, strange.java will immediately
halt

I THIS IS A CONTRADICTION!!!

I We conclude that halt.java is not detecting
infinite loops correctly.

13 / 31



The Halting Problem - Contradiction

I If halt.java says strange.java will halt on its
own source code, strange.java goes into an
infinite loop

I If halt.java says strange.java will loop on its
own source code, strange.java will immediately
halt

I THIS IS A CONTRADICTION!!!

I We conclude that halt.java is not detecting
infinite loops correctly.

13 / 31



The Halting Problem - Follow Up

Some notes:

I The point of this argument is not that we want
to write strange.java

I The point is that it shouldn’t even be possible
to write a program like strange.java

I It’s only possible to create strange.java if we
assume that halt.java exists

I We conclude that halt.java doesn’t exist,
because paradoxical programs don’t exist

14 / 31



The Halting Problem - Follow Up

Some notes:

I The point of this argument is not that we want
to write strange.java

I The point is that it shouldn’t even be possible
to write a program like strange.java

I It’s only possible to create strange.java if we
assume that halt.java exists

I We conclude that halt.java doesn’t exist,
because paradoxical programs don’t exist

14 / 31



The Halting Problem - Follow Up

Some notes:

I The point of this argument is not that we want
to write strange.java

I The point is that it shouldn’t even be possible
to write a program like strange.java

I It’s only possible to create strange.java if we
assume that halt.java exists

I We conclude that halt.java doesn’t exist,
because paradoxical programs don’t exist

14 / 31



The Halting Problem - Follow Up

Some notes:

I The point of this argument is not that we want
to write strange.java

I The point is that it shouldn’t even be possible
to write a program like strange.java

I It’s only possible to create strange.java if we
assume that halt.java exists

I We conclude that halt.java doesn’t exist,
because paradoxical programs don’t exist

14 / 31



The Halting Problem - Follow Up

Some notes:

I The point of this argument is not that we want
to write strange.java

I The point is that it shouldn’t even be possible
to write a program like strange.java

I It’s only possible to create strange.java if we
assume that halt.java exists

I We conclude that halt.java doesn’t exist,
because paradoxical programs don’t exist

14 / 31



The Halting Problem - Follow Up

Some notes:

I The point of this argument is not that we want
to write strange.java

I The point is that it shouldn’t even be possible
to write a program like strange.java

I It’s only possible to create strange.java if we
assume that halt.java exists

I We conclude that halt.java doesn’t exist,
because paradoxical programs don’t exist

14 / 31



HALT is Undecidable

Let’s prove the same theorem using Turing machines

HALT = {〈M ,w〉| M halts on w}

I We receive two input arguments

I The source code/description of machine M
I Some string w

I We want to design a machine that can check if
M will halt on w

15 / 31



HALT is Undecidable

Let’s prove the same theorem using Turing machines

HALT = {〈M ,w〉| M halts on w}

I We receive two input arguments

I The source code/description of machine M
I Some string w

I We want to design a machine that can check if
M will halt on w

15 / 31



HALT is Undecidable

Let’s prove the same theorem using Turing machines

HALT = {〈M ,w〉| M halts on w}

I We receive two input arguments
I The source code/description of machine M

I Some string w

I We want to design a machine that can check if
M will halt on w

15 / 31



HALT is Undecidable

Let’s prove the same theorem using Turing machines

HALT = {〈M ,w〉| M halts on w}

I We receive two input arguments
I The source code/description of machine M
I Some string w

I We want to design a machine that can check if
M will halt on w

15 / 31



HALT is Undecidable

Let’s prove the same theorem using Turing machines

HALT = {〈M ,w〉| M halts on w}

I We receive two input arguments
I The source code/description of machine M
I Some string w

I We want to design a machine that can check if
M will halt on w

15 / 31



HALT is Undecidable

Let’s prove the same theorem using Turing machines

HALT = {〈M ,w〉| M halts on w}

I We receive two input arguments
I The source code/description of machine M
I Some string w

I We want to design a machine that can check if
M will halt on w

Theorem: HALT is undecidable

15 / 31



HALT is Undecidable - Proof Idea

Proof idea: construct a machine that is
self-contradictory

I AFSOC H is a machine that decides HALT

I We will construct a machine S that asks H
what it is supposed to do and does the opposite

I By assuming that H exists, we can create a
machine S that should not exist

16 / 31



HALT is Undecidable - Proof Idea

Proof idea: construct a machine that is
self-contradictory

I AFSOC H is a machine that decides HALT

I We will construct a machine S that asks H
what it is supposed to do and does the opposite

I By assuming that H exists, we can create a
machine S that should not exist

16 / 31



HALT is Undecidable - Proof Idea

Proof idea: construct a machine that is
self-contradictory

I AFSOC H is a machine that decides HALT

I We will construct a machine S that asks H
what it is supposed to do and does the opposite

I By assuming that H exists, we can create a
machine S that should not exist

16 / 31



HALT is Undecidable - Proof Idea

Proof idea: construct a machine that is
self-contradictory

I AFSOC H is a machine that decides HALT

I We will construct a machine S that asks H
what it is supposed to do and does the opposite

I By assuming that H exists, we can create a
machine S that should not exist

16 / 31



Turing Machine Descriptions

I Let M be a Turing Machine

I 〈M〉 is a string that refers to the description of
M

I Think of 〈M〉 as a source code file and M as
an actual executable that can be run

17 / 31



Turing Machine Descriptions

I Let M be a Turing Machine

I 〈M〉 is a string that refers to the description of
M

I Think of 〈M〉 as a source code file and M as
an actual executable that can be run

17 / 31



Turing Machine Descriptions

I Let M be a Turing Machine

I 〈M〉 is a string that refers to the description of
M

I Think of 〈M〉 as a source code file and M as
an actual executable that can be run

17 / 31



Turing Machine Descriptions

I Let M be a Turing Machine

I 〈M〉 is a string that refers to the description of
M

I Think of 〈M〉 as a source code file and M as
an actual executable that can be run

17 / 31



HALT is Undecidable - Initial Assumption

AFSOC H decides HALT

I H takes 〈M ,w〉 as input

I H accepts if M halts on w

I H rejects if M loops on w

18 / 31



HALT is Undecidable - Initial Assumption

AFSOC H decides HALT

I H takes 〈M ,w〉 as input

I H accepts if M halts on w

I H rejects if M loops on w

18 / 31



HALT is Undecidable - Initial Assumption

AFSOC H decides HALT

I H takes 〈M ,w〉 as input

I H accepts if M halts on w

I H rejects if M loops on w

18 / 31



HALT is Undecidable - Initial Assumption

AFSOC H decides HALT

I H takes 〈M ,w〉 as input

I H accepts if M halts on w

I H rejects if M loops on w

18 / 31



HALT is Undecidable - Initial Assumption

AFSOC H decides HALT

I H takes 〈M ,w〉 as input

I H accepts if M halts on w

I H rejects if M loops on w

18 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says

3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says

3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉

2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says

3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says

3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says

3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says

3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says
3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop

3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says
3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Strange Machine

Construct a machine S that does the following:

1. S takes a machine description 〈M〉
2. Run H on 〈M , 〈M〉〉

I “Does M halt if it gets its own source code as
input?”

3. S then “does the opposite” of what H says
3.1 If H accepts 〈M , 〈M〉〉, S goes into a loop
3.2 If H rejects 〈M , 〈M〉〉, then S immediately halts

19 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉
3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉

2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉
3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉

3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉
3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉
3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉

I If S is supposed to halt on its own description, it
loops!

3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉

I If S is supposed to halt on its own description, it
loops!

3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉
I If S is supposed to loop on its own description, it

halts!

20 / 31



HALT is Undecidable - Contradiction

What happens if S receives 〈S〉 as input?

1. S runs H on 〈S , 〈S〉〉
2. If H accepts 〈S , 〈S〉〉, S loops on 〈S〉

I If S is supposed to halt on its own description, it
loops!

3. If H rejects 〈S , 〈S〉〉, S halts and accepts 〈S〉
I If S is supposed to loop on its own description, it

halts!

There is no way that H is actually deciding HALT
correctly!

20 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe

I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe

I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe

I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe

I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe
I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe
I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



Diagonalizing HALT

I We can interpret the preceding proof as a form
of diagonalization

I We assumed that we could determine what
every program does on every possible input

I We constructed a machine S that contradicted
every program in the universe
I But this means that S contradicts itself

I Thus we reject our original assumption

21 / 31



HALT is Recognizable

HALT is not decidable. Is it at least recognizable?

HALT = {〈M ,w〉|M halts on w}

Let’s design a machine H to recognize HALT

I If M halts on w then H needs to accept 〈M ,w〉
I If M loops on w then H should reject

or possibly loop on 〈M ,w〉

22 / 31



HALT is Recognizable

HALT is not decidable. Is it at least recognizable?

HALT = {〈M ,w〉|M halts on w}

Let’s design a machine H to recognize HALT

I If M halts on w then H needs to accept 〈M ,w〉
I If M loops on w then H should reject

or possibly loop on 〈M ,w〉

22 / 31



HALT is Recognizable

HALT is not decidable. Is it at least recognizable?

HALT = {〈M ,w〉|M halts on w}

Let’s design a machine H to recognize HALT

I If M halts on w then H needs to accept 〈M ,w〉

I If M loops on w then H should reject
or possibly loop on 〈M ,w〉

22 / 31



HALT is Recognizable

HALT is not decidable. Is it at least recognizable?

HALT = {〈M ,w〉|M halts on w}

Let’s design a machine H to recognize HALT

I If M halts on w then H needs to accept 〈M ,w〉
I If M loops on w then H should reject

or possibly loop on 〈M ,w〉

22 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:

1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉
1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:

1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉
1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:
1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉
1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:
1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉

1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:
1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉
1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:
1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉
1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



HALT is Recognizable
Let’s design a machine H to recognize

HALT = {〈M ,w〉|M halts on w}

H does the following on input 〈M ,w〉:
1. Run M on w

1.1 If M ever halts, then accept 〈M ,w〉
1.2 If M loops forever then H will loop forever

I If M does indeed halt on w then eventually H
will accept 〈M ,w〉

I If M loops forever on w , H will do the same, so
it will not accept 〈M ,w〉 (which is sufficient)

23 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

24 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

I We can construct a machine M that recognizes
L

I If w ∈ L (i.e. w /∈ L) then M will halt and
accept

I If w /∈ L (i.e. w ∈ L) then M will reject or loop
forever

24 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

I We can construct a machine M that recognizes
L

I If w ∈ L (i.e. w /∈ L) then M will halt and
accept

I If w /∈ L (i.e. w ∈ L) then M will reject or loop
forever

24 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

I We can construct a machine M that recognizes
L

I If w ∈ L (i.e. w /∈ L) then M will halt and
accept

I If w /∈ L (i.e. w ∈ L) then M will reject or loop
forever

24 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

I We sometimes say L is co-recognizable

I We can also say L is co-Recursively
Enumerable or co-RE

I Note: In prior lectures we used Lc to denote
the complement. For these topics, the
convention is to use L to denote the
complement

24 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

I We sometimes say L is co-recognizable

I We can also say L is co-Recursively
Enumerable or co-RE

I Note: In prior lectures we used Lc to denote
the complement. For these topics, the
convention is to use L to denote the
complement

24 / 31



co-Recognizable Languages

A language L is co-Turing Recognizable if it’s
complement L is recognizable

I We sometimes say L is co-recognizable

I We can also say L is co-Recursively
Enumerable or co-RE

I Note: In prior lectures we used Lc to denote
the complement. For these topics, the
convention is to use L to denote the
complement

24 / 31



co-Recognizable Languages

Theorem: A language is decidable if and only if L
is both recognizable and co-recognizable

1. (⇒) If a language is decidable it is both
recognizable and co-recognizable

2. (⇐) If a language is both recognizable and
co-recognizable, it is decidable

25 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is recognizable

I Let M be the machine that decides L
I Then M also recognizes L!

I M always halts
I If w ∈ L then M will halt and accept
I If w /∈ L, M will not accept (in fact, it will halt

and reject)

26 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is recognizable

I Let M be the machine that decides L

I Then M also recognizes L!

I M always halts
I If w ∈ L then M will halt and accept
I If w /∈ L, M will not accept (in fact, it will halt

and reject)

26 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is recognizable

I Let M be the machine that decides L
I Then M also recognizes L!

I M always halts
I If w ∈ L then M will halt and accept
I If w /∈ L, M will not accept (in fact, it will halt

and reject)

26 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is recognizable

I Let M be the machine that decides L
I Then M also recognizes L!

I M always halts

I If w ∈ L then M will halt and accept
I If w /∈ L, M will not accept (in fact, it will halt

and reject)

26 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is recognizable

I Let M be the machine that decides L
I Then M also recognizes L!

I M always halts
I If w ∈ L then M will halt and accept

I If w /∈ L, M will not accept (in fact, it will halt
and reject)

26 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is recognizable

I Let M be the machine that decides L
I Then M also recognizes L!

I M always halts
I If w ∈ L then M will halt and accept
I If w /∈ L, M will not accept (in fact, it will halt

and reject)

26 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is co-recognizable

I Let M be the machine that decides L
I To recognize L we create a machine M that

runs M and does the opposite

I M always halts, so M always halts
I If w ∈ L then M will halt and reject, so M will halt

and accept
I If w /∈ L, then w ∈ L. So M will halt and accept,

and M will halt and reject

27 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is co-recognizable

I Let M be the machine that decides L

I To recognize L we create a machine M that
runs M and does the opposite

I M always halts, so M always halts
I If w ∈ L then M will halt and reject, so M will halt

and accept
I If w /∈ L, then w ∈ L. So M will halt and accept,

and M will halt and reject

27 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is co-recognizable

I Let M be the machine that decides L
I To recognize L we create a machine M that

runs M and does the opposite

I M always halts, so M always halts
I If w ∈ L then M will halt and reject, so M will halt

and accept
I If w /∈ L, then w ∈ L. So M will halt and accept,

and M will halt and reject

27 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is co-recognizable

I Let M be the machine that decides L
I To recognize L we create a machine M that

runs M and does the opposite
I M always halts, so M always halts

I If w ∈ L then M will halt and reject, so M will halt
and accept

I If w /∈ L, then w ∈ L. So M will halt and accept,
and M will halt and reject

27 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is co-recognizable

I Let M be the machine that decides L
I To recognize L we create a machine M that

runs M and does the opposite
I M always halts, so M always halts
I If w ∈ L then M will halt and reject, so M will halt

and accept

I If w /∈ L, then w ∈ L. So M will halt and accept,
and M will halt and reject

27 / 31



co-Recognizable Languages

(⇒) If L is decidable then it is co-recognizable

I Let M be the machine that decides L
I To recognize L we create a machine M that

runs M and does the opposite
I M always halts, so M always halts
I If w ∈ L then M will halt and reject, so M will halt

and accept
I If w /∈ L, then w ∈ L. So M will halt and accept,

and M will halt and reject

27 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L

I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel

2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept

3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



co-Recognizable Languages

(⇐) If L is both recognizable and co-recognizable,
then L is decidable

I Let M recognize L and M recognize L

I Construct a machine D to decide L
I D does the following on input w

1. Run M and M in parallel
2. If M accepts, accept
3. If M accepts, reject

I Exactly one of the two machines has to
eventually accept, so D always halts

28 / 31



Decidable vs. (co-)Recognizable
Languages

29 / 31



Decidable vs. (co-)Recognizable
Languages

29 / 31



The language HALT

Consider the following language

HALT = {〈M ,w〉|M loops on w}

I Pronounced “co-HALT”

I If M loops on w we accept 〈M ,w〉
I If M halts on w we reject 〈M ,w〉
I HALT is co-recognizable because its

complement HALT is recognizable

30 / 31



The language HALT

Consider the following language

HALT = {〈M ,w〉|M loops on w}

I Pronounced “co-HALT”

I If M loops on w we accept 〈M ,w〉
I If M halts on w we reject 〈M ,w〉
I HALT is co-recognizable because its

complement HALT is recognizable

30 / 31



The language HALT

Consider the following language

HALT = {〈M ,w〉|M loops on w}

I Pronounced “co-HALT”

I If M loops on w we accept 〈M ,w〉

I If M halts on w we reject 〈M ,w〉
I HALT is co-recognizable because its

complement HALT is recognizable

30 / 31



The language HALT

Consider the following language

HALT = {〈M ,w〉|M loops on w}

I Pronounced “co-HALT”

I If M loops on w we accept 〈M ,w〉
I If M halts on w we reject 〈M ,w〉

I HALT is co-recognizable because its
complement HALT is recognizable

30 / 31



The language HALT

Consider the following language

HALT = {〈M ,w〉|M loops on w}

I Pronounced “co-HALT”

I If M loops on w we accept 〈M ,w〉
I If M halts on w we reject 〈M ,w〉
I HALT is co-recognizable because its

complement HALT is recognizable

30 / 31



Unrecognizability of HALT

Theorem: HALT is not Turing-recognizable

I AFSOC HALT is recognizable

I Then HALT is co-recognizable

I We know that HALT is also recognizable

I Then HALT would decidable, which is a
contradiction!

I We conclude that HALT is unrecognizable

31 / 31



Unrecognizability of HALT

Theorem: HALT is not Turing-recognizable

I AFSOC HALT is recognizable

I Then HALT is co-recognizable

I We know that HALT is also recognizable

I Then HALT would decidable, which is a
contradiction!

I We conclude that HALT is unrecognizable

31 / 31



Unrecognizability of HALT

Theorem: HALT is not Turing-recognizable

I AFSOC HALT is recognizable

I Then HALT is co-recognizable

I We know that HALT is also recognizable

I Then HALT would decidable, which is a
contradiction!

I We conclude that HALT is unrecognizable

31 / 31



Unrecognizability of HALT

Theorem: HALT is not Turing-recognizable

I AFSOC HALT is recognizable

I Then HALT is co-recognizable

I We know that HALT is also recognizable

I Then HALT would decidable, which is a
contradiction!

I We conclude that HALT is unrecognizable

31 / 31



Unrecognizability of HALT

Theorem: HALT is not Turing-recognizable

I AFSOC HALT is recognizable

I Then HALT is co-recognizable

I We know that HALT is also recognizable

I Then HALT would decidable, which is a
contradiction!

I We conclude that HALT is unrecognizable

31 / 31



Unrecognizability of HALT

Theorem: HALT is not Turing-recognizable

I AFSOC HALT is recognizable

I Then HALT is co-recognizable

I We know that HALT is also recognizable

I Then HALT would decidable, which is a
contradiction!

I We conclude that HALT is unrecognizable

31 / 31


