Theory of Computation Time Complexity

Arjun Chandrasekhar

Introduction to complexity theory

- So far we've studied what problems can (and can't) be solved by computers with theoretically unlimited resources
- ▶ In the real world, we have limited resources
 - time
 - memory
 - parallelism (i.e. number of processors)
 - randomness
- ➤ Complexity theory: what problems can (and can't) be solved within specific resource constraints

Worst case analysis

- We measure resources (e.g. time) using the Turing machine model of computation
- Resources are measured as a function $f: \mathbb{N} \to \mathbb{N}$ of the input length
 - f(n) tells us the *maximum* number of resources the machine could use on *all possible* inputs of size n
 - "Worst case analysis"
- ▶ Input length n is the number of symbols in the input string on the tape
 - ► The input string may encode an object with a different size (e.g. graph with n vertices vs. adjacency matrix with n² elements)

Algorithm running time

$$L = \{0^k 1^k | k \ge 0\}$$

How "fast" is the following machine to decide L?

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Repeat the following while both 0s and 1s are on the tape:
 - 2.1 Scan across the tape, erasing a single 0 and a single 1
- 3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that "fast"?

Algorithm running time

Physical running time

The physical running time of a machine is important! But it depends on...

- Hardware
- Input size/structure
- Perhaps the temperature of the room on that particular day?

None of these are properties of the actual algorithm!

Time Complexity

- ► Let *M* be a Turing machine
- ▶ **Def:** The **time complexity** of *M* is a function

$$T: \mathbb{N} \to \mathbb{N}$$

where T(n) is the maximum number of steps that M runs for on an input of length n

- ▶ We say "M runs in time T(n)"
- ► The running time of an algorithm is the running time of a TM that implements the algorithm

Time Complexity

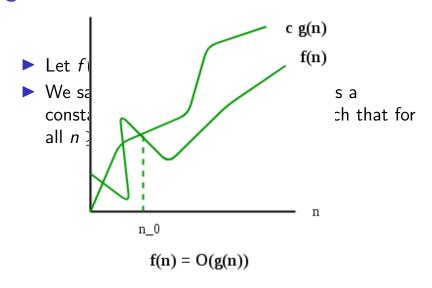
- Generally we don't care about the exact number of steps that the machine takes
- Instead, we ask: what is the relationship between the size of the input and the number of steps that the algorithm takes?
- What is the "order of magnitude" for the algorithm runtime?
- How does the algorithm "scale"?
 - As the input gets bigger, how many extra steps will the algorithm require?

Big-O Notation

- Let f(n) and g(n) be functions
- We say f(n) is O(g(n)) if there exists a constant c, and a cutoff point n_0 , such that for all $n \ge n_0$

$$f(n) \leq c \cdot g(n)$$

Big-O Notation



Big-O Runtime

- Let T(n) be the runtime for a machine M
- ▶ To convert T(n) to Big-O notation:
 - 1. Remove all "lower order" terms
 - 2. Remove any constant factors
- Example:

$$T(n) = 5n^3 + 17n^2 \log(n) + 3.2n^{1.5} + 19747487584$$

 $\rightarrow 5n^3$
 $\rightarrow O(n^3)$

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Repeat the following while both 0s and 1s are on the tape:
 - 2.1 Scan across the tape, erasing a single 0 and a single 1
- 3. If the tape is empty, accept. Otherwise, reject.

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Repeat the following while both 0s and 1s are on the tape:
 - 2.1 Scan across the tape, erasing a single 0 and a single 1
- 3. If the tape is empty, accept. Otherwise, reject.
- O(n) to check the input format

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Repeat the following while both 0s and 1s are on the tape:
 - 2.1 Scan across the tape, erasing a single 0 and a single 1
- 3. If the tape is empty, accept. Otherwise, reject.
- O(n) to check the input format O(n) loop iterations

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Repeat the following while both 0s and 1s are on the tape:
 - 2.1 Scan across the tape, erasing a single 0 and a single 1
- 3. If the tape is empty, accept. Otherwise, reject.
- O(n) to check the input format
- O(n) loop iterations
- O(n) per loop iteration

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Repeat the following while both 0s and 1s are on the tape:
 - 2.1 Scan across the tape, erasing a single 0 and a single 1
- 3. If the tape is empty, accept. Otherwise, reject.
- O(n) to check the input format
- O(n) loop iterations
- O(n) per loop iteration

$$O(n) + O(n) \cdot O(n) = O(n^2)$$

Complexity of $0^k 1^k$

- ► The language $L = \{0^k 1^k | k \ge 0\}$ can be recognized in $O(n^2)$ time
- ▶ In fact, it an be recognized in $O(n \log n)$ time (Sipser)
- ► Can we do better?
 - ▶ It turns out, we cannot!
 - ...on a single-tape TM

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Read the 0's on tape 1, copy them onto tape 2
- 3. Read the 1's on tape 1, cross off 0's on tape 2
- 4. If the 0's and 1's run out at the same time, accept; otherwise reject.

What is the time complexity of the following <u>2-tape</u> TM to decide $L = \{0^n 1^n | n \ge 0\}$?

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Read the 0's on tape 1, copy them onto tape 2
- 3. Read the 1's on tape 1, cross off 0's on tape 2
- 4. If the 0's and 1's run out at the same time, accept; otherwise reject.
- O(n) to check the input format

What is the time complexity of the following <u>2-tape</u> TM to decide $L = \{0^n 1^n | n \ge 0\}$?

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Read the 0's on tape 1, copy them onto tape 2
- 3. Read the 1's on tape 1, cross off 0's on tape 2
- 4. If the 0's and 1's run out at the same time, accept; otherwise reject.
- O(n) to check the input format O(n) to read the 0's

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Read the 0's on tape 1, copy them onto tape 2
- 3. Read the 1's on tape 1, cross off 0's on tape 2
- 4. If the 0's and 1's run out at the same time, accept; otherwise reject.
- O(n) to check the input format O(n) to read the 0's O(n) to read the 1's

- 1. Scan across the tape and reject if a 0 is found to the right of a 1
- 2. Read the 0's on tape 1, copy them onto tape 2
- 3. Read the 1's on tape 1, cross off 0's on tape 2
- 4. If the 0's and 1's run out at the same time, accept; otherwise reject.
- O(n) to check the input format O(n) to read the 0's O(n) to read the 1's O(n) + O(n) + O(n) = O(n)

Common Runtimes

- ► O(1) "constant"
- \triangleright $O(\log(n))$ "logarithmic"
- \triangleright O(n) "linear"
- \triangleright $O(n^2)$ "quadratic"
- $O(n^c) = n^{O(1)} = c^{O(\log(n))} \text{"polynomial"}$
- \triangleright $O(2^{n^c})$ "exponential"

Models of computation in complexity

- Our choice of model of computation did not affect our computability results
 - ► A single-tape Turing machine is just as *robust* as any other model
- The previous example shows that our choice of model does affect complexity results
 - A single-tape Turing machine isn't as fast as some other models
- For the rest of this course, a single-tape TM will still suffice (but we need to justify this)
- ► For an algorithms course, we typically analyze complexity using models that are more expressive than a single-tape TM

Theorem: Any language that can be recognized by a k-tape TM in O(T(n)) time can be recognized by a single-tape TM in $O(T(n)^2)$ time

Proof Idea:

- Simulate the original k tapes on k separate sections of the single tape
- \triangleright O(T(n)) simulation rounds
- \triangleright O(T(n)) steps per round
- ▶ **Remark:** If a TM runs in O(T(n)) time, it touches at most O(T(n)) tape squares

Tape Head Update each tape's contents O(T(n)) times

Tape 1 Tape 2 Tape k \leq O(T(n)) O(T(n)) O(T(n))

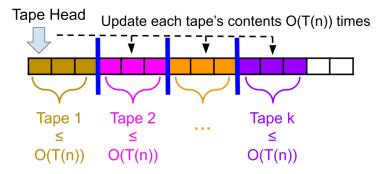
- 1. Repeat the following O(T(n)) times:
 - 1.1 Scan across the tape, and update each tape's contents

Tape Head Update each tape's contents O(T(n)) times

Tape 1 Tape 2 Tape k \leq \leq O(T(n)) O(T(n))

- 1. Repeat the following O(T(n)) times:
 - 1.1 Scan across the tape, and update each tape's contents

O(T(n)) rounds



- 1. Repeat the following O(T(n)) times:
 - 1.1 Scan across the tape, and update each tape's contents

$$O(T(n))$$
 rounds $k \cdot O(T(n)) = O(T(n))$ to scan the k sections

Tape Head Update each tape's contents O(T(n)) times

Tape 1 Tape 2 Tape k \leq O(T(n)) O(T(n)) O(T(n))

- 1. Repeat the following O(T(n)) times:
 - 1.1 Scan across the tape, and update each tape's contents

$$O(T(n))$$
 rounds $k \cdot O(T(n)) = O(T(n))$ to scan the k sections $O(T(n)) \cdot O(T(n)) = O(T(n)^2)$

- ▶ It is often more convenient to describe our algorithm with a multi-tape TM
- We only incur a polynomial slowdown when we convert the algorithm to a single-tape TM
- We will see that this is good enough for the problems we are exploring in this course

Extended Church-Turing Thesis

Anything that can be computed in time O(T(n)) on a "physical computer" can be computed in time $O(T(n)^c)$ on a Turing machine

- An algorithm on any type of machine can be converted to a TM algorithm with only a polynomial-time slowdown
- ► TMs formalize our intuitive notion of (efficient) algorithms
- Quantum computers may prove to be an exception