Theory of Computation
Time Complexity

Arjun Chandrasekhar

1/18

Introduction to complexity theory

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

» In the real world, we have limited resources

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

» In the real world, we have limited resources

> time

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

» In the real world, we have limited resources

> time
> memory

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

» In the real world, we have limited resources

> time
> memory
» parallelism (i.e. number of processors)

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

» In the real world, we have limited resources

> time
> memory

» parallelism (i.e. number of processors)
> randomness

2/18

Introduction to complexity theory

» So far we've studied what problems can (and
can't) be solved by computers with
theoretically unlimited resources

» In the real world, we have limited resources

> time

> memory

» parallelism (i.e. number of processors)
» randomness

» Complexity theory: what problems can (and
can't) be solved within specific resource
constraints

2/18

Worst case analysis

3/18

Worst case analysis

» We measure resources (e.g. time) using the
Turing machine model of computation

3/18

Worst case analysis

» We measure resources (e.g. time) using the
Turing machine model of computation

» Resources are measured as a function
f : N — N of the input length

3/18

Worst case analysis

» We measure resources (e.g. time) using the
Turing machine model of computation

» Resources are measured as a function
f : N — N of the input length

» f(n) tells us the maximum number of resources the
machine could use on all possible inputs of size n

3/18

Worst case analysis

» We measure resources (e.g. time) using the
Turing machine model of computation

» Resources are measured as a function
f : N — N of the input length

» f(n) tells us the maximum number of resources the

machine could use on all possible inputs of size n
> “Worst case analysis”

3/18

Worst case analysis

» We measure resources (e.g. time) using the
Turing machine model of computation

» Resources are measured as a function
f : N — N of the input length
» f(n) tells us the maximum number of resources the
machine could use on all possible inputs of size n
> “Worst case analysis”

» Input length n is the number of symbols in the
input string on the tape

3/18

Worst case analysis

» We measure resources (e.g. time) using the
Turing machine model of computation

» Resources are measured as a function
f : N — N of the input length

» f(n) tells us the maximum number of resources the
machine could use on all possible inputs of size n
> “Worst case analysis”

» Input length n is the number of symbols in the
input string on the tape

» The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n? elements)

3/18

Algorithm running time

4/18

Algorithm running time

L = {0*1%|k > 0}

How “fast” is the following machine to decide L?

4/18

Algorithm running time

L = {0*1%|k > 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

4/18

Algorithm running time

L = {0*1%|k > 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

4/18

Algorithm running time

L = {0*1%|k > 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

4/18

Algorithm running time

L = {0*1%|k > 0}
How “fast” is the following machine to decide L?
1. Scan across the tape and reject if a 0 is found

to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

4/18

Algorithm running time

L = {0*1%|k > 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.
The machine runs in 5 seconds. |s that “fast”?

4/18

Algorithm running time

Physical running time

The physical running time of a machine is
important! But it depends on...

5/18

Physical running time

The physical running time of a machine is
important! But it depends on...

» Hardware

5/18

Physical running time

The physical running time of a machine is
important! But it depends on...

» Hardware
» Input size/structure

5/18

Physical running time

The physical running time of a machine is
important! But it depends on...

» Hardware
» Input size/structure

» Perhaps the temperature of the room on that
particular day?

5/18

Physical running time

The physical running time of a machine is
important! But it depends on...

» Hardware
» Input size/structure

» Perhaps the temperature of the room on that
particular day?

None of these are properties of the actual
algorithm!

5/18

Time Complexity

6,18

Time Complexity

» Let M be a Turing machine

6,18

Time Complexity

» Let M be a Turing machine
» Def: The time complexity of M is a function

T:N—N

where T(n) is the maximum number of steps
that M runs for on an input of length n

6/18

Time Complexity

» Let M be a Turing machine
» Def: The time complexity of M is a function

T:N—N

where T(n) is the maximum number of steps
that M runs for on an input of length n

» We say “M runs in time T(n)"

6/18

Time Complexity

» Let M be a Turing machine
» Def: The time complexity of M is a function

T:N—N

where T(n) is the maximum number of steps
that M runs for on an input of length n

» We say “M runs in time T(n)"

» The running time of an algorithm is the running
time of a TM that implements the algorithm

6/18

Time Complexity

7/18

Time Complexity

» Generally we don't care about the exact
number of steps that the machine takes

7/18

Time Complexity

» Generally we don't care about the exact
number of steps that the machine takes

» Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

7/18

Time Complexity

» Generally we don't care about the exact
number of steps that the machine takes

» Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

» What is the “order of magnitude” for the
algorithm runtime?

7/18

Time Complexity

» Generally we don't care about the exact
number of steps that the machine takes

» Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

» What is the “order of magnitude” for the
algorithm runtime?

» How does the algorithm “scale”?

7/18

Time Complexity

>

>

Generally we don't care about the exact
number of steps that the machine takes

Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

What is the “order of magnitude” for the
algorithm runtime?

How does the algorithm “scale”?

» As the input gets bigger, how many extra steps will
the algorithm require?

7/18

Big-O Notation

8 /18

Big-O Notation

» Let f(n) and g(n) be functions

8 /18

Big-O Notation

» Let f(n) and g(n) be functions

» We say f(n) is O(g(n)) if there exists a
constant ¢, and a cutoff point ng, such that for
all n > ng

f(n) < c-g(n)

8/18

Big-O Notation

c g(n)
> Let f f(n)
» We sz s a
const: ch that for

all n?

n_0

f(n) = O(g(m)
8/18

Big-O Runtime

9/18

Big-O Runtime

» Let T(n) be the runtime for a machine M

9/18

Big-O Runtime

» Let T(n) be the runtime for a machine M
» To convert T(n) to Big-O notation:

9/18

Big-O Runtime
» Let T(n) be the runtime for a machine M

» To convert T(n) to Big-O notation:
1. Remove all “lower order” terms

9/18

Big-O Runtime

» Let T(n) be the runtime for a machine M

» To convert T(n) to Big-O notation:

1. Remove all “lower order” terms
2. Remove any constant factors

9/18

Big-O Runtime

» Let T(n) be the runtime for a machine M

» To convert T(n) to Big-O notation:
1. Remove all “lower order” terms
2. Remove any constant factors

» Example:

T(n) = 5n + 17n? log(n) + 3.2n'° + 19747487584
— 5n°

— O(n?)

9/18

Runtime Analysis Example

What is the time complexity of the following TM to
decide L = {0%1K|k > 0}7?
1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

10/ 18

Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0%1K|k > 0}7?
1. Scan across the tape and reject if a 0 is found

to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.
O(n) to check the input format

10/ 18

Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0%1K|k > 0}7?
1. Scan across the tape and reject if a 0 is found

to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

O(n) to check the input format
O(n) loop iterations

10/ 18

Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0%1K|k > 0}7?
1. Scan across the tape and reject if a 0 is found

to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1
3. If the tape is empty, accept. Otherwise, reject.
O(n) to check the input format
O(n) loop iterations
O(n) per loop iteration

10/ 18

Runtime Analysis Example

What is the time complexity of the following TM to
decide L = {0%1K|k > 0}7?
1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both Os and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1
3. If the tape is empty, accept. Otherwise, reject.
O(n) to check the input format
O(n) loop iterations
O(n) per loop iteration
O(n) + O(n) - O(n) = O(n?)
10/18

Complexity of 0K1%

» The language L = {0%1%|k > 0} can be
recognized in O(n?) time

11/18

Complexity of 0K1%

» The language L = {0%1%|k > 0} can be
recognized in O(n?) time
» In fact, it an be recognized in O(nlog n) time

(Sipser)

11/18

Complexity of 0K1%

» The language L = {0%1%|k > 0} can be
recognized in O(n?) time

» In fact, it an be recognized in O(nlog n) time
(Sipser)
» Can we do better?

11/18

Complexity of 0K1%

» The language L = {0%1%|k > 0} can be
recognized in O(n?) time
» In fact, it an be recognized in O(nlog n) time
(Sipser)
» Can we do better?
» |t turns out, we cannot!

11/18

Complexity of 0K1%

» The language L = {0%1%|k > 0} can be
recognized in O(n?) time

» In fact, it an be recognized in O(nlog n) time
(Sipser)

» Can we do better?

» |t turns out, we cannot!
» ...on asingle-tape TM

11/18

Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0"1"|n > 0}7
1. Scan across the tape and reject if a 0 is found
to the right of a 1
2. Read the 0's on tape 1, copy them onto tape 2
3. Read the 1's on tape 1, cross off 0's on tape 2

4. If the O's and 1's run out at the same time,
accept; otherwise reject.

12/18

Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0"1"|n > 0}7
1. Scan across the tape and reject if a 0 is found
to the right of a 1
2. Read the 0's on tape 1, copy them onto tape 2
3. Read the 1's on tape 1, cross off 0's on tape 2

4. If the O's and 1's run out at the same time,
accept; otherwise reject.

O(n) to check the input format

12/18

Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0"1"|n > 0}7
1. Scan across the tape and reject if a 0 is found
to the right of a 1
2. Read the 0's on tape 1, copy them onto tape 2
3. Read the 1's on tape 1, cross off 0's on tape 2

4. If the O's and 1's run out at the same time,
accept; otherwise reject.

O(n) to check the input format
O(n) to read the 0's

12/18

Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0"1"|n > 0}7
1. Scan across the tape and reject if a 0 is found
to the right of a 1
2. Read the 0's on tape 1, copy them onto tape 2
3. Read the 1's on tape 1, cross off O's on tape 2

4. If the O's and 1's run out at the same time,
accept; otherwise reject.
O(n) to check the input format
O(n) to read the 0's
O(n) to read the 1's

12/18

Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0"1"|n > 0}7
1. Scan across the tape and reject if a 0 is found
to the right of a 1
2. Read the 0's on tape 1, copy them onto tape 2
3. Read the 1's on tape 1, cross off 0's on tape 2

4. If the O's and 1's run out at the same time,
accept; otherwise reject.

O(n) to check the input format
O(n) to read the 0's
O(n) to read the 1's

O(n) 4 O(n) + O(n) = O(n)

12/18

Common Runtimes

13/18

Common Runtimes

» O(1) — “constant”

13 /18

Common Runtimes

» O(1) — “constant”
» O(log(n)) — "logarithmic”

13 /18

Common Runtimes

» O(1) — “constant”
» O(log(n)) — "logarithmic”
» O(n) — "linear”

13/18

Common Runtimes

» O(1) — “constant”

» O(log(n)) — "logarithmic”
» O(n) — "linear”

» O(n?) - “quadratic”

13/18

Common Runtimes

O(1) — “constant”

O(log(n)) — “logarithmic”

O(n) — “linear”

O(n?) — “quadratic”

O(n¢) = n9) = Oloe(n) — “polynomial”

vvyVvyvy

13/18

Common Runtimes

O(1) — “constant”

O(log(n)) — “logarithmic”

O(n) — “linear”

O(n?) — “quadratic”

O(n¢) = n9) = Oloe(n) — “polynomial”
O(2") - “exponential”

vvyvyvVvyyvyy

13/18

Models of computation in complexity

14 /18

Models of computation in complexity

» Our choice of model of computation did not
affect our computability results

14 /18

Models of computation in complexity

» Our choice of model of computation did not
affect our computability results

» A single-tape Turing machine is just as robust as
any other model

14 /18

Models of computation in complexity
» Our choice of model of computation did not
affect our computability results

» A single-tape Turing machine is just as robust as
any other model

» The previous example shows that our choice of
model does affect complexity results

14 /18

Models of computation in complexity

» Our choice of model of computation did not
affect our computability results

» A single-tape Turing machine is just as robust as
any other model
» The previous example shows that our choice of
model does affect complexity results

» A single-tape Turing machine isn't as fast as some
other models

14 /18

Models of computation in complexity
» Our choice of model of computation did not
affect our computability results

» A single-tape Turing machine is just as robust as
any other model

» The previous example shows that our choice of
model does affect complexity results

» A single-tape Turing machine isn't as fast as some
other models

» For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

14 /18

Models of computation in complexity

» Our choice of model of computation did not
affect our computability results
» A single-tape Turing machine is just as robust as
any other model

» The previous example shows that our choice of
model does affect complexity results

» A single-tape Turing machine isn't as fast as some
other models
» For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

» For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 /18

Complexity of multi-tape TMs

Theorem: Any language that can be recognized by
a k-tape TM in O(T(n)) time can be recognized by
a single-tape TM in O(T(n)?) time

15 /18

Complexity of multi-tape TMs

Theorem: Any language that can be recognized by
a k-tape TM in O(T(n)) time can be recognized by
a single-tape TM in O(T(n)?) time

Proof ldea:

15 /18

Complexity of multi-tape TMs

Theorem: Any language that can be recognized by
a k-tape TM in O(T(n)) time can be recognized by
a single-tape TM in O(T(n)?) time

Proof ldea:

» Simulate the original k tapes on k separate
sections of the single tape

15 /18

Complexity of multi-tape TMs

Theorem: Any language that can be recognized by
a k-tape TM in O(T(n)) time can be recognized by
a single-tape TM in O(T(n)?) time

Proof ldea:

» Simulate the original k tapes on k separate
sections of the single tape

» O(T(n)) simulation rounds

15 /18

Complexity of multi-tape TMs

Theorem: Any language that can be recognized by
a k-tape TM in O(T(n)) time can be recognized by
a single-tape TM in O(T(n)?) time

Proof ldea:

» Simulate the original k tapes on k separate
sections of the single tape

» O(T(n)) simulation rounds
» O(T(n)) steps per round

15 /18

Complexity of multi-tape TMs

Theorem: Any language that can be recognized by
a k-tape TM in O(T(n)) time can be recognized by
a single-tape TM in O(T(n)?) time

Proof ldea:

» Simulate the original k tapes on k separate
sections of the single tape

» O(T(n)) simulation rounds
» O(T(n)) steps per round

» Remark: If a TM runs in O(T(n)) time, it
touches at most O(T(n)) tape squares

15 /18

Complexity of multi-tape TMs

Tape Head ypgate each tape’s contents O(T(n)) times

s i
] v

Tape 1 Tape 2 Tape k
O(T(n) O(T(n)) o(T(n))

16 /18

Complexity of multi-tape TMs

Tape Head Update each tape’s contents O(T(n)) times

s A T
i i B s

Tape 1 Tape 2 Tape k
o(T(n) O(T(n)) o(T(n))

1. Repeat the following O(T(n)) times:

16 /18

Complexity of multi-tape TMs

Tape Head Update each tape’s contents O(T(n)) times

s A T
i i B s

Tape 1 Tape 2 Tape k
o(T(n) O(T(n)) o(T(n))

1. Repeat the following O(T(n)) times:
1.1 Scan across the tape, and update each tape's
contents

16 /18

Complexity of multi-tape TMs

Tape Head Update each tape’s contents O(T(n)) times

s A T
i i B s

Tape 1 Tape 2 Tape k
o(T(n) O(T(n)) o(T(n))

1. Repeat the following O(T(n)) times:
1.1 Scan across the tape, and update each tape's
contents

O(T(n)) rounds

16 /18

Complexity of multi-tape TMs

Tape Head Update each tape’s contents O(T(n)) times

s A T
i i B s

Tape 1 Tape 2 Tape k
o(T(n) O(T(n)) o(T(n))

1. Repeat the following O(T(n)) times:
1.1 Scan across the tape, and update each tape's
contents

O(T(n)) rounds
k- O(T(n)) = O(T(n)) to scan the k sections

16 /18

Complexity of multi-tape TMs

Tape Head Update each tape’s contents O(T(n)) times

s i
] v

Tape 1 Tape 2 Tape k
< < <
O(T(n)) O(T(n)) O(T(n))

1. Repeat the following O(T(n)) times:
1.1 Scan across the tape, and update each tape's
contents

O(T(n)) rounds
k- O(T(n)) = O(T(n)) to scan the k sections

O(T(n)) - O(T(n)) = O(T(n)?) 16 /18

Complexity of multi-tape TMs

17 /18

Complexity of multi-tape TMs

» |t is often more convenient to describe our
algorithm with a multi-tape TM

17 /18

Complexity of multi-tape TMs

» It is often more convenient to describe our
algorithm with a multi-tape TM

» We only incur a polynomial slowdown when we
convert the algorithm to a single-tape TM

17 /18

Complexity of multi-tape TMs

» |t is often more convenient to describe our
algorithm with a multi-tape TM

» We only incur a polynomial slowdown when we
convert the algorithm to a single-tape TM

» We will see that this is good enough for the
problems we are exploring in this course

17 /18

Extended Church-Turing Thesis

18 /18

Extended Church-Turing Thesis

Anything that can be computed in time O(T(n))
on a “physical computer” can be computed in time
O(T(n)¢) on a Turing machine

18 /18

Extended Church-Turing Thesis

Anything that can be computed in time O(T(n))
on a “physical computer” can be computed in time
O(T(n)¢) on a Turing machine
» An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown

18 /18

Extended Church-Turing Thesis

Anything that can be computed in time O(T(n))
on a “physical computer” can be computed in time
O(T(n)¢) on a Turing machine
» An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown
» TMs formalize our intuitive notion of
(efficient) algorithms

18 /18

Extended Church-Turing Thesis

Anything that can be computed in time O(T(n))
on a “physical computer” can be computed in time
O(T(n)¢) on a Turing machine
» An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown
» TMs formalize our intuitive notion of
(efficient) algorithms
» Quantum computers may prove to be an
exception

18 /18

