Theory of Computation Decidable Languages

Arjun Chandrasekhar

A Turing Machine can take a DFA as input

A Turing Machine can take a DFA as input

This is what you did on assignment 1!

A Turing Machine can take a DFA as input
 This is what you did on assignment 1!
 A Turing Machine can create a DFA

A Turing Machine can take a DFA as input
 This is what you did on assignment 1!
 A Turing Machine can create a DFA
 This is what you did on assignment 2!

A Turing Machine can take a DFA as input
 This is what you did on assignment 1!
 A Turing Machine can create a DFA
 This is what you did on assignment 2!
 A Turing machine can take a TM as input

A Turing Machine can take a DFA as input
 This is what you did on assignment 1!
 A Turing Machine can create a DFA
 This is what you did on assignment 2!
 A Turing machine can take a TM as input
 Think about how the java compiler takes your source code as it its input

- A Turing Machine can take a DFA as input
 This is what you did on assignment 1!
 A Turing Machine can create a DFA
 This is what you did on assignment 2!
 A Turing machine can take a TM as input
 Think about how the java compiler takes your source code as it its input
- A Turing machine can create other TMs

- A Turing Machine can take a DFA as input This is what you did on assignment 1! A Turing Machine can create a DFA This is what you did on assignment 2! A Turing machine can take a TM as input Think about how the java compiler takes your source code as it its input A Turing machine can create other TMs Think about how the compiler uses your source
 - code to create executable files

Given an arbitrary DFA D, can we write a program to determine certain properties about it?

Given an arbitrary DFA D, can we write a program to determine certain properties about it?

► Does *D* accept a particular string *w*?

Given an arbitrary DFA D, can we write a program to determine certain properties about it?

- ► Does *D* accept a particular string *w*?
- Does D accept anything? Does it reject everything?

Given an arbitrary DFA D, can we write a program to determine certain properties about it?

- ► Does *D* accept a particular string *w*?
- Does D accept anything? Does it reject everything?
- Does D accept every string that contains 111?

The language A_{DFA}

Consider the following language

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

What is the input to the decision problem associated with this language?

A) A description of aDFAC) A DFA description, and an input string

B) A regular language

D) A DFA that is designed to recognize the string *w*

The language A_{DFA}

Consider the following language

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

What is the input to the decision problem associated with this language?

A) A description of aC) A DFA description,DFAand an input string \checkmark

B) A regular language

D) A DFA that is designed to recognize the string *w*

Consider the following language

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

What should we do to show that L is decidable?

A) Design a DFA that accepts the string *w*

B) Design a TM that accepts the string *w*

C) Design a TM that designs a DFA *D* that accepts *w*

D) Design a TM that checks if *D* accepts *w*

Consider the following language

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

What should we do to show that L is decidable?

A) Design a DFA that accepts the string *w*

B) Design a TM that accepts the string *w*

C) Design a TM that designs a DFA *D* that accepts *w*

D) Design a TM that checks if D accepts $w \checkmark$

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!

Create a machine *M* that decides A_{DFA}

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!
 Create a machine *M* that decides A_{DFA}
 1. *M* takes (*D*, *w*) as input

$$6\,/\,32$$

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!

- Create a machine *M* that decides A_{DFA}
 - 1. *M* takes $\langle D, w \rangle$ as input
 - 2. Construct the state graph for D

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!

- Create a machine *M* that decides A_{DFA}
 - 1. *M* takes $\langle D, w \rangle$ as input
 - 2. Construct the state graph for D
 - 3. Simulate D on w

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!

- Create a machine *M* that decides A_{DFA}
 - 1. *M* takes $\langle D, w \rangle$ as input
 - 2. Construct the state graph for D
 - 3. Simulate D on w
 - 4. If D accepts w, then M accepts $\langle D, w \rangle$

Let's prove that the following language is decidable

 $A_{DFA} = \{ \langle D, w \rangle | D \text{ is a DFA description}, w \in L(D) \}$

You did this on Program 1!

- Create a machine *M* that decides A_{DFA}
 - 1. *M* takes $\langle D, w \rangle$ as input
 - 2. Construct the state graph for D
 - 3. Simulate D on w
 - 4. If D accepts w, then M accepts $\langle D, w \rangle$

6

5. Otherwise, M rejects $\langle D, w \rangle$

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$ > You did this on Program 2!

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

You did this on Program 2!

• Create a machine M that decides A_{NFA}

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

- You did this on Program 2!
- Create a machine *M* that decides A_{NFA}

1. *M* takes $\langle N, w \rangle$ as input

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

- You did this on Program 2!
- Create a machine *M* that decides A_{NFA}
 - 1. *M* takes $\langle N, w \rangle$ as input
 - 2. Convert N to a a DFA D

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

- You did this on Program 2!
- Create a machine *M* that decides A_{NFA}
 - 1. *M* takes $\langle N, w \rangle$ as input
 - 2. Convert N to a a DFA D
 - 3. Check if $\langle D, w \rangle \in A_{DFA}$

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

- You did this on Program 2!
- Create a machine *M* that decides A_{NFA}
 - 1. *M* takes $\langle N, w \rangle$ as input
 - 2. Convert N to a a DFA D
 - 3. Check if $\langle D, w \rangle \in A_{DFA}$

3.1 If $\langle D, w
angle \in \mathrm{A}_{\mathrm{DFA}}$, M accepts $\langle N, w
angle$

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

- You did this on Program 2!
- Create a machine *M* that decides A_{NFA}
 - 1. *M* takes $\langle N, w \rangle$ as input
 - 2. Convert N to a a DFA D
 - 3. Check if $\langle D, w \rangle \in A_{DFA}$
 - 3.1 If $\langle D, w
 angle \in \mathrm{A}_{\mathrm{DFA}}$, M accepts $\langle N, w
 angle$
 - 3.2 Otherwise, M rejects $\langle N, w \rangle$

Prove that the following language is decidable

 $A_{NFA} = \{ \langle N, w \rangle | N \text{ is an NFA description}, w \in L(N) \}$

- You did this on Program 2!
- Create a machine *M* that decides A_{NFA}
 - 1. *M* takes $\langle N, w \rangle$ as input
 - 2. Convert N to a a DFA D
 - 3. Check if $\langle D, w \rangle \in A_{DFA}$
 - 3.1 If $\langle D, w
 angle \in \mathrm{A}_{\mathrm{DFA}}$, M accepts $\langle N, w
 angle$
 - 3.2 Otherwise, M rejects $\langle N, w \rangle$

This is an example of "reducing" or "converting" one problem $(A_{\rm NFA})$ to another one $(A_{\rm DFA})$ that we already know how to solve
Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

Prove that the following language is decidable

 $A_{\text{REG}} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$ You will do this on Program 3!

Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

- You will do this on Program 3!
- Create a machine *M* that decides A_{REG}

Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

You will do this on Program 3!

Create a machine *M* that decides A_{REG}
 1. *M* takes (*R*, *w*) as input

Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

- You will do this on Program 3!
- Create a machine *M* that decides A_{REG}
 - 1. *M* takes $\langle R, w \rangle$ as input
 - 2. Convert R to an equivalent NFA N

Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

- You will do this on Program 3!
- Create a machine *M* that decides A_{REG}
 - 1. *M* takes $\langle R, w \rangle$ as input
 - 2. Convert R to an equivalent NFA N
 - 3. Check if $\langle N, w \rangle \in A_{NFA}$

Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

You will do this on Program 3!

- Create a machine *M* that decides A_{REG}
 - 1. *M* takes $\langle R, w \rangle$ as input
 - 2. Convert R to an equivalent NFA N
 - 3. Check if $\langle N, w \rangle \in A_{NFA}$
 - 3.1 If $\langle N, w
 angle \in \mathrm{A}_{\mathrm{NFA}}$, then M accepts $\langle R, w
 angle$

Prove that the following language is decidable

 $A_{REG} = \{ \langle R, w \rangle | R \text{ is a regex}, w \in L(R) \}$

You will do this on Program 3!

- Create a machine *M* that decides A_{REG}
 - 1. *M* takes $\langle R, w \rangle$ as input
 - 2. Convert R to an equivalent NFA N
 - 3. Check if $\langle N, w \rangle \in A_{NFA}$
 - 3.1 If $\langle N,w
 angle\in \mathrm{A}_{\mathrm{NFA}}$, then M accepts $\langle R,w
 angle$
 - 3.2 Otherwise, M rejects $\langle R, w \rangle$

Recap

Recap

 We can write a program to test if an arbitrary DFA accepts an arbitrary string

Recap

- We can write a program to test if an arbitrary DFA accepts an arbitrary string
- We can do the same with NFAs, regexes, and anything equivalent

The language E_{DFA} Consider the following language

 $\mathrm{E}_{\mathrm{DFA}} = \{ \langle D \rangle | D \text{ is a DFA}, L(D) = \emptyset \}$

What should we do to show that L is decidable?

A) Check if a DFAC) Design a DFA that recognizes the empty set

B) Design a TM that can check if a DFA recognizes the empty set **D)** Design a TM that can design a DFA to recognize the empty set

The language E_{DFA} Consider the following language

 $\mathrm{E}_{\mathrm{DFA}} = \{ \langle D \rangle | D \text{ is a DFA}, L(D) = \emptyset \}$

What should we do to show that L is decidable?

A) Check if a DFAC) Design a DFA that recognizes the empty set

B) Design a TM that
 Can check if a DFA
 Can design recognizes the empty set
 ✓

D) Design a TM that can design a DFA to recognize the empty set

Decidability of $E_{\mbox{\scriptsize DFA}}$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

11 / 32

▶ We'll design a machine *M* that decides *L*

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L
 1. M takes (D) as input

 $11 \, / \, 32$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

▶ We'll design a machine *M* that decides *L*

- 1. *M* takes $\langle D \rangle$ as input
- 2. Go through every string $w_1, w_2, \dots \in \Sigma^*$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Go through every string $w_1, w_2, \dots \in \Sigma^*$
- 3. If D ever accepts any w_i , then M rejects $\langle D \rangle$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Go through every string $w_1, w_2, \dots \in \Sigma^*$
- 3. If D ever accepts any w_i , then M rejects $\langle D \rangle$

11 /

4. Otherwise *M* accepts $\langle M \rangle$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Go through every string $w_1, w_2, \dots \in \Sigma^*$
- 3. If D ever accepts any w_i , then M rejects $\langle D \rangle$
- 4. Otherwise M accepts $\langle M \rangle$

Will this work?

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Go through every string $w_1, w_2, \dots \in \Sigma^*$
- 3. If D ever accepts any w_i , then M rejects $\langle D \rangle$

11 /

4. Otherwise M accepts $\langle M \rangle$

Will this work? No! This will run forever if $\langle D \rangle \in E_{DFA}!$

Let's prove that the following language is decidable

$$\mathbb{E}_{ ext{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

▶ We'll design a machine *M* that decides *L*

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L
 1. M takes (D) as input

12 / 32

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D

$$12 \, / \, 32$$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D
- 3. Check if there exists a path from the start state to each accept state

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D
- 3. Check if there exists a path from the start state to each accept state
 - 3.1 If there is no path to any accept state, M accepts $\langle D\rangle.$

Let's prove that the following language is decidable

$$\mathrm{E}_{\mathrm{DFA}} = \{ \langle D
angle | D ext{ is a DFA}, \mathcal{L}(D) = \emptyset \}$$

We'll design a machine M that decides L

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D
- 3. Check if there exists a path from the start state to each accept state
 - 3.1 If there is no path to any accept state, M accepts $\langle D \rangle$.

12 / 32

3.2 Otherwise, *M* rejects $\langle D \rangle$

Consider the following language:

 $L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$

Consider the following language:

 $L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$

What should we do to show that L is decidable?

A) Check if a DFA accepts at least one string

B) Design a DFA that accepts at least one string

C) Design a TM that can design a DFA to accept at least one string

D) Design a TM that can check if a given DFA accepts at least one string

 $13 \, / \, 32$

Consider the following language:

 $L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$

What should we do to show that L is decidable?

A) Check if a DFA accepts at least one string

B) Design a DFA that accepts at least one string

C) Design a TM that can design a DFA to accept at least one string

D) Design a TM that can check if a given DFA accepts at least one string √

 $13 \, / \, 32$

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

Let's prove that the following language is decidable

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D)
eq \emptyset \}$$

Approach 1: Design a machine M that decides L

Let's prove that the following language is decidable

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

1. *M* takes $\langle D \rangle$ as input

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D
- 3. Check if there is a path from the start state to *any* accept state

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D
- 3. Check if there is a path from the start state to *any* accept state
 - 3.1 If there is a path to an accept state, M acceepts $\langle D
 angle$

14 /
$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

- 1. *M* takes $\langle D \rangle$ as input
- 2. Construct the state graph for D
- 3. Check if there is a path from the start state to *any* accept state
 - 3.1 If there is a path to an accept state, M acceepts $\langle D
 angle$
 - 3.2 Otherwise *M* rejects $\langle D \rangle$

Let's prove that the following language is decidable

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

Approach 2: Appeal to TM closure properties

Let's prove that the following language is decidable

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

Approach 2: Appeal to TM closure properties
 We showed that E_{DFA} = { (D) | L(D) = Ø } is decidable

Let's prove that the following language is decidable

$$L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$$

Approach 2: Appeal to TM closure properties
 We showed that E_{DFA} = { (D) | L(D) = Ø } is decidable

• Note that
$$L = (E_{DFA})^c$$

$$15 \, / \, 32$$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$

- ► Approach 2: Appeal to TM closure properties
- We showed that E_{DFA} = {⟨D⟩|L(D) = ∅} is decidable
- Note that $L = (E_{DFA})^c$
- Decidable languages are closed under complement

 $15 \, / \, 32$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | D \text{ is a DFA}, L(D) \neq \emptyset \}$

- ► Approach 2: Appeal to TM closure properties
- We showed that E_{DFA} = {⟨D⟩|L(D) = ∅} is decidable
- Note that $L = (E_{DFA})^c$
- Decidable languages are closed under complement
- So L is decidable

 $15 \, / \, 32$

Recap

Recap

 We can design a TM to test if an arbitrary DFA accepts anything at all

Recap

- We can design a TM to test if an arbitrary DFA accepts anything at all
- We can design a TM to test if an arbitrary DFA rejects everything

Consider the following language:

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

Consider the following language:

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

What should we do to show that L is decidable?

A) Design a TM to check if a given DFA accepts the string 111 **C)** Design a TM to check if a given DFA accepts any string containing 111

B) Design a TM to check if a given DFA accepts the string *x*111*y* **D)** Design a TM to check if a given DFA only accepts strings containing 111 17 / 32

Consider the following language:

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

What should we do to show that L is decidable?

A) Design a TM to check if a given DFA accepts the string 111

C) Design a TM to check if a given DFA accepts any string containing 111 √

B) Design a TM to check if a given DFA accepts the string *x*111*y* **D)** Design a TM to check if a given DFA only accepts strings containing 111 17 / 32

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

- Hint 1: $\Sigma^* 111\Sigma^*$ can be described by a DFA
- Hint 2: Regular languages are closed under intersection
- Hint 3: We can check if a DFA is non-empty

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

Proof Idea: Check that the set of x111y strings that are also accepted by D is not empty

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

Proof Idea: Check that the set of x111y strings that are also accepted by D is not empty

► Suppose *D* accepts x111y for some $x, y \in \Sigma^*$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

Proof Idea: Check that the set of x111y strings that are also accepted by D is not empty

Suppose *D* accepts x111y for some $x, y \in \Sigma^*$

19

• Then $L(D) \cap (\Sigma^* 111\Sigma^*) \neq \emptyset$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

Proof Idea: Check that the set of x111y strings that are also accepted by D is not empty

- ► Suppose *D* accepts x111y for some $x, y \in \Sigma^*$
- ► Then $L(D) \cap (\Sigma^* 111\Sigma^*) \neq \emptyset$
 - x111y is accepted by both D and by the regex Σ*111Σ*

 $L = \{ \langle D_1 \rangle \mid D_1 \text{ is a DFA, x111y} \in L(D_1) \text{ for some x, y} \}$

Check that this area is not empty

Let's prove that the following language is decidable

$$L = \{ \langle D
angle | x 111y \in L(D) ext{ for some } x, y \in \Sigma^* \}$$

 \blacktriangleright Let M_E decide E_{DFA}

$$L = \{ \langle D
angle | x 111y \in L(D) ext{ for some } x, y \in \Sigma^* \}$$

- Let M_E decide E_{DFA}
- Design a machine M that decides L

$$L = \{ \langle D
angle | x 111y \in L(D) ext{ for some } x, y \in \Sigma^* \}$$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes $\Sigma^* 111 \Sigma^*$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes $\Sigma^* 111 \Sigma^*$
 - 3. Create a DFA D_3 that recognizes $L(D) \cap L(D_2)$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes $\Sigma^* 111 \Sigma^*$
 - 3. Create a DFA D_3 that recognizes $L(D) \cap L(D_2)$
 - 4. Check if $\langle D_3 \rangle \in E_{\text{DFA}}$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes $\Sigma^* 111 \Sigma^*$
 - 3. Create a DFA D_3 that recognizes $L(D) \cap L(D_2)$
 - 4. Check if $\langle D_3 \rangle \in E_{\text{DFA}}$
 - 4.1 If M_E accepts $\langle D_3 \rangle$, then M rejects $\langle D \rangle$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes $\Sigma^* 111 \Sigma^*$
 - 3. Create a DFA D_3 that recognizes $L(D) \cap L(D_2)$
 - 4. Check if $\langle D_3 \rangle \in E_{DFA}$
 - 4.1 If M_E accepts $\langle D_3 \rangle$, then M rejects $\langle D \rangle$
 - 4.2 Otherwise, M accepts $\langle D \rangle$

Let's prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for some } x, y \in \Sigma^* \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes $\Sigma^* 111 \Sigma^*$
 - 3. Create a DFA D_3 that recognizes $L(D) \cap L(D_2)$
 - 4. Check if $\langle D_3 \rangle \in E_{DFA}$
 - 4.1 If M_E accepts $\langle D_3 \rangle$, then M rejects $\langle D \rangle$
 - 4.2 Otherwise, M accepts $\langle D \rangle$

This is an example of a machine/program that creates *another* machine/program *at runtime*

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$$

Prove that the following language is decidable

- $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{\text{all }} x, y \in \Sigma^* \}$
- Hint 1: $\Sigma^* 111\Sigma^*$ can be recognized by a DFA
- Hint 2: Regular languages are closed under intersection and complement
- Hint 3: we can check if a DFA is empty

Prove that the following language is decidable

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$$

Proof Idea: We check that the set of x111y string that are rejected by *D* is empty

Prove that the following language is decidable

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$$

Proof Idea: We check that the set of x111y string that are rejected by *D* is empty

We check that Σ*111Σ* has nothing in common with the complement of L(D)

Prove that the following language is decidable

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$$

Proof Idea: We check that the set of x111y string that are rejected by *D* is empty

We check that Σ*111Σ* has nothing in common with the complement of L(D)

Suppose
$$\Sigma^* 111\Sigma^* \subseteq L(D)$$

Prove that the following language is decidable

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$$

Proof Idea: We check that the set of x111y string that are rejected by *D* is empty

22

- We check that Σ*111Σ* has nothing in common with the complement of L(D)
- Suppose $\Sigma^* 111\Sigma^* \subseteq L(D)$
- Then $L(D)^{c} \cap (\Sigma^{*}111\Sigma^{*}) = \emptyset$

 $L = \{ \langle D_1 \rangle \mid D_1 \text{ is a DFA, x111y} \in L(D_1) \text{ for all } x, y \}$

Prove that the following language is decidable

$$L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{\text{all }} x, y \in \Sigma^* \}$$

 \blacktriangleright Let M_E decide E_{DFA}

Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{\text{all }} x, y \in \Sigma^* \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$

Let *M_E* decide E_{DFA}
Design a machine *M* that decides *L*1. *M* takes (*D*) as input

Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$

- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes ($\Sigma^*111\Sigma^*$)

Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{\text{all }} x, y \in \Sigma^* \}$

- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes ($\Sigma^*111\Sigma^*$)
 - 3. Create a DFA D_3 that recognizes $L(D_1)^c \cap L(D_2)$

$$23 \, / \, 32$$

Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{\text{all }} x, y \in \Sigma^* \}$

- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes ($\Sigma^*111\Sigma^*$)
 - 3. Create a DFA D_3 that recognizes $L(D_1)^c \cap L(D_2)$
 - 4. Use M_E to check if $\langle D_3 \rangle \in E_{\text{DFA}}$

Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$

 \blacktriangleright Let M_E decide E_{DFA}

- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes ($\Sigma^*111\Sigma^*$)
 - 3. Create a DFA D_3 that recognizes $L(D_1)^c \cap L(D_2)$
 - 4. Use M_E to check if $\langle D_3 \rangle \in E_{DFA}$
 - 4.1 If M_E accepts $\langle D_3
 angle$, then M accepts $\langle D
 angle$

23 / 32

Prove that the following language is decidable

 $L = \{ \langle D \rangle | x 111y \in L(D) \text{ for } \underline{all} \ x, y \in \Sigma^* \}$

 \blacktriangleright Let M_E decide E_{DFA}

- Design a machine M that decides L
 - 1. *M* takes $\langle D \rangle$ as input
 - 2. Create a DFA D_2 that recognizes ($\Sigma^*111\Sigma^*$)
 - 3. Create a DFA D_3 that recognizes $L(D_1)^c \cap L(D_2)$

23/

- 4. Use M_E to check if $\langle D_3 \rangle \in E_{DFA}$
 - 4.1 If M_E accepts $\langle D_3
 angle$, then M accepts $\langle D
 angle$
 - 4.2 Otherwise, M rejects $\langle D \rangle$

Theorem: The following language is decidable

Theorem: The following language is decidable

- Hint: regular languages are closed under complement, and union
- Hint: try to figure out if there is a string that is accepted by one machine but not the other

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

▶ Let
$$L_1 = L(D_1)$$
, and let $L_2 = L(D_2)$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

• Let
$$L_1 = L(D_1)$$
, and let $L_2 = L(D_2)$

Suppose
$$L_1 = L_2$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

• Let
$$L_1 = L(D_1)$$
, and let $L_2 = L(D_2)$

Suppose
$$L_1 = L_2$$

$$\blacktriangleright \text{ Then } L_1 \cap L_2^c = \emptyset$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

Theorem: The following language is decidable

$$\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$$

Check that these areas are empty

25 / 32

Theorem: The following language is decidable

 $\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$

Theorem: The following language is decidable

- Let M_E decide E_{DFA}
- Design a machine M that decides L

Theorem: The following language is decidable

 $\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$

- \blacktriangleright Let M_E decide E_{DFA}
- Design a machine M that decides L

1. *M* takes $\langle D_1, D_2 \rangle$ as input

Theorem: The following language is decidable

- \blacktriangleright Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D_1, D_2 \rangle$ as input
 - 2. Create a DFA D_3 that recognizes $L(D_1) \cap L(D_2)^c$

Theorem: The following language is decidable

- \blacktriangleright Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D_1, D_2 \rangle$ as input
 - 2. Create a DFA D_3 that recognizes $L(D_1) \cap L(D_2)^c$
 - 3. Create a DFA D_4 that recognizes $L(D_1)^c \cap L(D_2)$

Theorem: The following language is decidable

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D_1, D_2 \rangle$ as input
 - 2. Create a DFA D_3 that recognizes $L(D_1) \cap L(D_2)^c$
 - 3. Create a DFA D_4 that recognizes $L(D_1)^c \cap L(D_2)$
 - 4. Create a DFA D_5 that recognizes $L(D_3) \cup L(D_4)$

Theorem: The following language is decidable

 $\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D_1, D_2 \rangle$ as input
 - 2. Create a DFA D_3 that recognizes $L(D_1) \cap L(D_2)^c$
 - 3. Create a DFA D_4 that recognizes $L(D_1)^c \cap L(D_2)$
 - 4. Create a DFA D_5 that recognizes $L(D_3) \cup L(D_4)$

26

5. Use M_E to check if $\langle D_5 \rangle \in \tilde{E}_{DFA}$

Theorem: The following language is decidable

 $\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D_1, D_2 \rangle$ as input
 - 2. Create a DFA D_3 that recognizes $L(D_1) \cap L(D_2)^c$
 - 3. Create a DFA D_4 that recognizes $L(D_1)^c \cap L(D_2)$
 - 4. Create a DFA D_5 that recognizes $L(D_3) \cup L(D_4)$
 - 5. Use M_E to check if $\langle D_5 \rangle \in E_{\text{DFA}}$
 - 5.1 If M_E accepts $\langle D_5 \rangle$, then M accepts $\langle D_1, D_2 \rangle$

26 / 32

Theorem: The following language is decidable

 $\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle | L(D_1) = L(D_2) \}$

- Let M_E decide E_{DFA}
- Design a machine M that decides L
 - 1. *M* takes $\langle D_1, D_2 \rangle$ as input
 - 2. Create a DFA D_3 that recognizes $L(D_1) \cap L(D_2)^c$
 - 3. Create a DFA D_4 that recognizes $L(D_1)^c \cap L(D_2)$
 - 4. Create a DFA D_5 that recognizes $L(D_3) \cup L(D_4)$
 - 5. Use M_E to check if $\langle D_5 \rangle \in E_{\text{DFA}}$
 - 5.1 If M_E accepts $\langle D_5 \rangle$, then M accepts $\langle D_1, D_2 \rangle$
 - 5.2 Otherwise, *M* rejects $\langle D_1, D_2 \rangle$

$26 \, / \, 32$

Recap

27 / 32

Recap

We can test if an arbitrary DFA intersects with or contains a certain collections of strings

Recap

- We can test if an arbitrary DFA intersects with or contains a certain collections of strings
- ► We can test if two DFAs are equivalent

Consider the following language

 $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$

Consider the following language

 $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$

What is input to the decision problem associated with this language?

- **A)** The description of a TM
- **C)** The description of a TM that runs for 100 steps

B) The description of a TM, as well as an input string

D) The description of a TM, as well as a string that it finishes processing in 100 steps 28 / 32

Consider the following language

 $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$

What is input to the decision problem associated with this language?

- **A)** The description of a TM
- **C)** The description of a TM that runs for 100 steps

B) The description of a TM, as well as an input string \checkmark

D) The description of a TM, as well as a string that it finishes processing in 100 steps 28 / 32

Decidable Turing Machine Properties Consider the following language

 $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$

What should we do to show that L is decidable?

A) Design a machine that can check if a given TM halts on a given string in 100 steps **C)** Design a machine that can accept *w* within 100 steps

B) Design a machine that can create a machine that runs for 100 steps **D)** Design a machine that can check if a given TM always runs for 100 steps 20 / 32

Decidable Turing Machine Properties Consider the following language

 $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$

What should we do to show that L is decidable?

A) Design a machine
 that can check if a given
 TM halts on a given
 string in 100 steps √

C) Design a machine that can accept *w* within 100 steps

B) Design a machine that can create a machine that runs for 100 steps **D)** Design a machine that can check if a given TM always runs for 100 steps 20 / 32

Let's prove that the following language is decidable

L = {⟨M, w⟩|M is a TM that halts on w in 100 steps}
▶ Design a machine M_L that decides L

30 /
Let's prove that the following language is decidable

L = {⟨M, w⟩|M is a TM that halts on w in 100 steps}
▶ Design a machine M_L that decides L
1. M_L takes ⟨M, w⟩ as input

Let's prove that the following language is decidable

 $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$

- Design a machine M_L that decides L
 - 1. M_L takes $\langle M, w \rangle$ as input
 - 2. Run M on w

Let's prove that the following language is decidable

- $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$
 - Design a machine M_L that decides L
 - 1. M_L takes $\langle M, w \rangle$ as input
 - 2. Run M on w
 - 3. If *M* accepts or rejects within the first 100 steps, then M_L accepts $\langle M, w \rangle$

30.

Let's prove that the following language is decidable

- $L = \{ \langle M, w \rangle | M \text{ is a TM that halts on w in 100 steps} \}$
 - Design a machine M_L that decides L
 - 1. M_L takes $\langle M, w \rangle$ as input
 - 2. Run *M* on *w*
 - 3. If *M* accepts or rejects within the first 100 steps, then M_L accepts $\langle M, w \rangle$

30 /

4. If *M* runs for 100 steps without accepting or rejecting, M_L rejects $\langle M, w \rangle$

Prove that the following language is decidable

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Check if an arbitrary program M finishes processing an arbitrary input w in *any* number of steps

Prove that the following language is decidable

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Check if an arbitrary program *M* finishes processing an arbitrary input *w* in *any* number of steps
▶ Design a machine *M_H* that decides HALT

Prove that the following language is decidable

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Check if an arbitrary program *M* finishes processing an arbitrary input *w* in *any* number of steps
▶ Design a machine *M_H* that decides HALT
1. *M_H* takes ⟨*M*, *w*⟩ as input

Prove that the following language is decidable

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Check if an arbitrary program *M* finishes processing an arbitrary input *w* in *any* number of steps
▶ Design a machine *M_H* that decides HALT *M_H* takes ⟨*M*, *w*⟩ as input
Run *M* on *w*

31

Prove that the following language is decidable

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Check if an arbitrary program M finishes processing an arbitrary input w in *any* number of steps

- Design a machine M_H that decides HALT
 - 1. M_H takes $\langle M, w \rangle$ as input
 - 2. Run M on w
 - 3. If *M* ever accepts or rejects *w*, M_L accepts $\langle M, w \rangle$

$31 \, / \, 32$

Prove that the following language is decidable

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Check if an arbitrary program M finishes processing an arbitrary input w in *any* number of steps

- Design a machine M_H that decides HALT
 - 1. M_H takes $\langle M, w \rangle$ as input
 - 2. Run *M* on *w*
 - 3. If M ever accepts or rejects w, M_L accepts $\langle M, w \rangle$

31 /

4. If *M* loops on *w*, M_H ...loops on $\langle M, w \rangle$

WHAT IS GOING ON IN THERE? WHY - WHAT IS TAKING SO LONG?

It turns out this is NOT a decidable language

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

It turns out this is NOT a decidable language

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

 No matter how smart you are, you will NEVER be able to write a program to decide this language

It turns out this is NOT a decidable language

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

- No matter how smart you are, you will NEVER be able to write a program to decide this language
- The java compiler cannot be trained to detect infinite loops before you run the code

It turns out this is NOT a decidable language

 $HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$

- No matter how smart you are, you will NEVER be able to write a program to decide this language
- The java compiler cannot be trained to detect infinite loops before you run the code
- ► How do we prove such a statement?