
Turing Machine Variants

Arjun Chandrasekhar

1 / 28

Turing Completeness
I Def: A model of computation is Turing

complete if it is equivalent to the Turing

machine model

I We need to show that a language can be

recognized by a Turing machine if and only if it

can be recognized by a machine from the other

model

I This involves two directions:

1. Show that every language that can be recognized

by a Turing machine can be recognized by a

machine from the other model

2. Show that every language that can be recognized

by a machine from the other model can be

recognized a Turing machine

2 / 28

Stationary Turing Machine

I Def: A stationary Turing machine
(stationary TM) is a like a normal Turing

machine, but the machine has the option to

stay in place after reading a character.

I The transition function is

� : Q ⇥ � ! Q ⇥ �⇥ {L,R , S}

3 / 28

Stationary Turing Machine

I Let’s prove that stationary Turing machines are

equivalent to Turing machine.

I That is, L can be recognized by a Turing machine

if and only if L is recognized by a stationary TM

I There are two directions to this proof

1. If L is recognized by a normal TM, it can

recognized by a stationary TM

2. If L is recognized by a stationary TM, it can be

recognized by a TM

4 / 28

Stationary Turing Machine

()) If L is recognized by a normal TM, it can be

recognized by a stationary TM

I Let M be the TM that recognizes L
I M is a stationary TM that simply chooses not

to stay in place

I Thus, L can be recognized by a stationary TM

5 / 28

Stationary Turing Machine

(() If L is recognized by a stationary TM, it can be

recognized by a normal TM

I Let M be the stationary TM that recognizes L
I Technique: create a normal TM that

simulates M
I Create a machine M2 behaves as M would,

with one exception

I If M is supposed to stay in place, M2 will move

left and then move right before proceeding

6 / 28

2-hop Turing Machine

I Def: A 2-hop Turing Machine is a like a

normal Turing machine, but it can move up to

2 spaces left or right.

I The transition function is

� : Q ⇥ � ! Q ⇥ �⇥ {L,R , LL,RR}
I Let’s prove that 2-hop Turing machines

equivalent to Turing machines.

I What are the two directions?

7 / 28

2-hop Turing Machine

()) If L is recognized by a normal TM, it can be

recognized by a 2-hop TM

I Let M be the TM that recognizes L
I M is a 2-hop TM that chooses to only move

one square at a time.

8 / 28

2-hop Turing Machine

(() If L is recognized by a 2-hop TM, it can be

recognized by a normal TM

I Let M be the 2-hop TM that recognizes L
I We will design a normal TM M2 to simulate M
I M2 operates as M would. If M tries to hop two

spaces right or left, M2 will perform the two

hops over two consecutive steps

9 / 28

2-tape Turing Machine

I Def: A 2-tape Turing machine is a TM with

2 di↵erent tapes

I Each tape has a separate tape head

I The two tape heads share a common state, but

they move independently

I The transition function is

� : Q ⇥ �
2 ! Q ⇥ �

2 ⇥ {L,R}2
I Let’s prove that 2-tape Turing machines are

equivalent to (1-tape) Turing machines

I What are the two directions?

10 / 28

2-tape Turing Machine

I Def: A 2-tape Turing machine is a TM with

2 di↵erent tapes

I Each tape has a separate tape head

I The two tape heads share a common state, but

they move independently

I The transition function is

� : Q ⇥ �
2 ! Q ⇥ �

2 ⇥ {L,R}2
I Let’s prove that 2-tape Turing machines are

equivalent to (1-tape) Turing machines

I What are the two directions?

10 / 28

2-tape Turing Machine

I Def: A 2-tape Turing machine is a TM with

2 di↵erent tapes

I Each tape has a separate tape head

I The two tape heads share a common state, but

they move independently

I The transition function is

� : Q ⇥ �
2 ! Q ⇥ �

2 ⇥ {L,R}2
I Let’s prove that 2-tape Turing machines are

equivalent to (1-tape) Turing machines

I What are the two directions?

10 / 28

2-tape Turing Machine

()) If L is recognized by a 1-tape TM, it can be

recognized by a 2-tape TM

I Let M be the 1-tape TM that recognizes L
I M is a 2-tape TM that ignores the second tape

11 / 28

2-tape Turing Machine
(() If L is recognized by a 2-tape TM, it can be

recognized by a 1-tape TM

I Let M be the 2-tape TM that recognizes L
I We will design a 1-tape TM called M2 to

recognize L
I M2 will use its single tape to keep track of both

of M’s tapes.

I At every step, M2 simulates both tape heads of

M
I If needed, M2 can always push the second tape

farther downstream to make more room for the

first tape

12 / 28

2-tape Turing Machine
(() If L is recognized by a 2-tape TM, it can be

recognized by a 1-tape TM

I Let M be the 2-tape TM that recognizes L
I We will design a 1-tape TM called M2 to

recognize L
I M2 will use its single tape to keep track of both

of M’s tapes.

I At every step, M2 simulates both tape heads of

M
I If needed, M2 can always push the second tape

farther downstream to make more room for the

first tape

12 / 28

Non-deterministic Turing Machine
I Def: A non-deterministic Turing machine

is a normal TM, but it can make several

di↵erent choices at each step

I The transition function is

� : Q ⇥ � ! P (Q ⇥ �⇥ {L,R})
I There are many possible computation paths for the

same string

I The machine accepts if at least one computation

path accepts

I Let’s show non-deterministic TMs are

equivalent to deterministic TMs

I What are the two directions?

I Keep in mind that some computation paths may

not halt

13 / 28

Non-deterministic Turing Machine

()) If L is recognized by a deterministic TM, it can

be recognized by a non-deterministic TM

I Let M be the machine that recognizes L
I M is a non-determinstic TM that only has one

computation path

14 / 28

Non-deterministic Turing Machine
(() If L is recognized by a non-deterministic TM, it

can be recognized by a deterministic TM

I Let M be the non-deterministic TM that

recognizes L
I Design a deterministic TM called M2 to

simulate M
I We run M , and try all possible computation

paths.

I If any computation path accepts, M2 accepts,

otherwise it rejects

15 / 28

Non-deterministic Turing Machine
(() If L is recognized by a non-deterministic TM, it

can be recognized by a deterministic TM

I Let M be the non-deterministic TM that

recognizes L
I Design a deterministic TM called M2 to

simulate M
I We run M , and try all possible computation

paths.

I If any computation path accepts, M2 accepts,

otherwise it rejects

15 / 28

Non-deterministic Turing Machine
(() If L is recognized by a non-deterministic TM, it

can be recognized by a deterministic TM

I Let M be the non-deterministic TM that

recognizes L
I Design a deterministic TM called M2 to

simulate M
I We run M , and try all possible computation

paths.

We might get stuck on a path that loops

forever!

I If any computation path accepts, M2 accepts,

otherwise it rejects

15 / 28

Non-deterministic Turing Machine
(() If L is recognized by a non-deterministic TM, it

can be recognized by a deterministic TM

I Let M be the non-deterministic TM that

recognizes L
I Design a deterministic TM called M2 to

simulate M
I We run M , and try all possible computation

paths.

I If any computation path accepts, M2 accepts,

otherwise it rejects

15 / 28

Breadth-first search

Technique: We run M , and test out all possible

computation paths in parallel

I Keep track of all the current computation paths

I Run each current path for one step (rather

than running any one path to completion)

I “breadth-first search”

16 / 28

Breadth-first search

17 / 28

Non-deterministic Turing Machine

(() If L is recognized by a non-deterministic TM, it

can be recognized by a deterministic TM

I Let M be the non-deterministic TM that

recognizes L
I Design a deterministic TM called M2 to

simulate M
I M2 tries out all possible computation paths of

M in parallel

I If any computation path accepts ever, M2

accepts, otherwise it rejects

18 / 28

Non-deterministic Turing Machine

19 / 28

Enumerator

Def: An enumerator is a Turing machine with an

attached printer

I At any point in time the TM may ask the

printer to print a string

20 / 28

Enumerator
Def: An enumerator is a Turing machine with an

attached printer

I At any point in time the TM may ask the

printer to print a string

20 / 28

Recursively Enumerable Languages

I Let L be a language, and let E be an

enumerator

I We say E enumerates L if E prints out every

string in L
I If we give the enumerator infinite time, it will

eventually print out every string in the language

I Def: If L can be enumerated, we say L is

recursively enumerable (RE)

21 / 28

Recursively Enumerable Languages

Proposition: The following language is recursively

enumerable

L = {p|p 2 N, p is prime}

1. For i = 0, 1, 2, . . .
1.1 Check if i is prime

1.2 If i is prime, print it out

22 / 28

Recursively Enumerable Languages

Theorem: A language L is Turing-recognizable if

and only if L is recursively enumerable.

There are two directions:

1. If L is Turing-recognizable, there is an

enumerator E that enumerates L

2. If L is RE, then some machine M can recognize

L

23 / 28

Recursively Enumerable Languages

()) If L is recursively enumerable, L is

Turing-recognizable

I We know some machine E enumerates L
I Design a machine M to recognize L
I On input w , do the following:

1. Run E to enumerate L
2. If E ever prints out w , then w 2 L so immediately

accept

3. If E never prints out w , then w /2 L and M will run

forever (which is OK)

24 / 28

Recursively Enumerable Languages

(() If L is Turing-recognizable, then L is recursively

enumerable

I We know some machine M recognizes L
I If w 2 L, M accepts w
I If w /2 L then M rejects or loops

I We design a machine E to enumerate L
1. Go through all w 2 ⌃

⇤
one at a time and run M

on each w
2. If M accepts w , print out w .

3. After processing w , move on the the next string

25 / 28

Recursively Enumerable Languages

(() If L is Turing-recognizable, then L is recursively

enumerable

I We know some machine M recognizes L
I If w 2 L, M accepts w
I If w /2 L then M rejects or loops

I We design a machine E to enumerate L
1. Go through all w 2 ⌃

⇤
one at a time and run M

on each w
2. If M accepts w , print out w .

3. After processing w , move on the the next string

25 / 28

Recursively Enumerable Languages

(() If L is Turing-recognizable, then L is recursively

enumerable

I We know some machine M recognizes L
I If w 2 L, M accepts w
I If w /2 L then M rejects or loops

I We design a machine E to enumerate L
1. Go through all w 2 ⌃

⇤
one at a time and run M

on each w
2. If M accepts w , print out w .

This may run forever!

3. After processing w , move on the the next string

25 / 28

Dovetailing

Technique: Run a machine M in parallel on all

possible strings through dovetailing.

I Let w1,w2, · · · 2 ⌃
⇤

I Let S(i , j) represent step i in M’s computation

on string wj

1. Run S(1, 1)
2. Run S(1, 2), S(2, 1)
3. Run S(1, 3), S(2, 2), S(3, 1)
4. Run S(1, 4), S(2, 3), S(3, 2), S(4, 1)
5. . . .

26 / 28

Dovetailing

27 / 28

Recursively Enumerable Languages

(() If L is Turing-recognizable, then L is recursively

enumerable

I We know some machine M recognizes L
I If w 2 L, M accepts w
I If w /2 L then M rejects or loops

I We design a machine E to enumerate L
1. Run M in parallel on all strings w 2 ⌃

⇤

(dovetailing)

2. Whenever M accepts a string w , print out w (but

keep running the other strings)

28 / 28

