Turing Machine Variants

Arjun Chandrasekhar

1/28



Turing Completeness

» Def: A model of computation is Turing
complete if it is equivalent to the Turing
machine model

» We need to show that a language can be
recognized by a Turing machine if and only if it
can be recognized by a machine from the other
model

» This involves two directions:

1. Show that every language that can be recognized
by a Turing machine can be recognized by a
machine from the other model

2. Show that every language that can be recognized

by a machine from the other model can be
recognized a Turing machine

2 /28



Stationary Turing Machine

» Def: A stationary Turing machine
(stationary TM) is a like a normal Turing
machine, but the machine has the option to
stay in place after reading a character.

» The transition function is
0:QxI—=>QxTIx{L RS}

3/28



Stationary Turing Machine

» Let's prove that stationary Turing machines are
equivalent to Turing machine.
» That is, L can be recognized by a Turing machine
if and only if L is recognized by a stationary TM
» There are two directions to this proof

1. If L is recognized by a normal TM, it can
recognized by a stationary TM

2. If L is recognized by a stationary TM, it can be
recognized by a TM

4 /28



Stationary Turing Machine

(=) If L is recognized by a normal TM, it can be
recognized by a stationary TM
» Let M be the TM that recognizes L
» M is a stationary TM that simply chooses not
to stay in place
» Thus, L can be recognized by a stationary TM

5 /28



Stationary Turing Machine

(«<=) If L is recognized by a stationary TM, it can be
recognized by a normal TM

» Let M be the stationary TM that recognizes L

» Technique: create a normal TM that
simulates M

» Create a machine M, behaves as M would,
with one exception

» If M is supposed to stay in place, M, will move
left and then move right before proceeding

6/28



2-hop Turing Machine

» Def: A 2-hop Turing Machine is a like a
normal Turing machine, but it can move up to
2 spaces left or right.
» The transition function is
§:QxT — QxTx{LR,LLRR}
» Let's prove that 2-hop Turing machines
equivalent to Turing machines.
» What are the two directions?

7/28



2-hop Turing Machine

(=) If L is recognized by a normal TM, it can be
recognized by a 2-hop TM

» Let M be the TM that recognizes L

» M is a 2-hop TM that chooses to only move
one square at a time.

8 /28



2-hop Turing Machine

(<) If L is recognized by a 2-hop TM, it can be
recognized by a normal TM

» Let M be the 2-hop TM that recognizes L
» We will design a normal TM M, to simulate M

» M, operates as M would. If M tries to hop two
spaces right or left, M, will perform the two
hops over two consecutive steps

9/28



2-tape Turing Machine

» Def: A 2-tape Turing machine is a TM with
2 different tapes

» Each tape has a separate tape head
» The two tape heads share a common state, but
they move independently

10 /28



2-tape Turing Machine




2-tape Turing Machine

» Def: A 2-tape Turing machine is a TM with
2 different tapes
» Each tape has a separate tape head
» The two tape heads share a common state, but
they move independently
» The transition function is
§:QxT?— QxTI?x{L R}
» Let's prove that 2-tape Turing machines are
equivalent to (1-tape) Turing machines
» What are the two directions?

10 /28



2-tape Turing Machine

(=) If L is recognized by a 1-tape TM, it can be
recognized by a 2-tape TM

» Let M be the 1-tape TM that recognizes L
» M is a 2-tape TM that ignores the second tape

11/28



2-tape Turing Machine
(<) If L is recognized by a 2-tape TM, it can be
recognized by a 1-tape TM
» Let M be the 2-tape TM that recognizes L
» We will design a 1-tape TM called M, to
recognize L
» M, will use its single tape to keep track of both
of M’s tapes.
» At every step, M, simulates both tape heads of
M
» If needed, M, can always push the second tape
farther downstream to make more room for the
first tape

12/28



2-tape Turing Machine

Tape Head Update both tape contents at each step

N\ R\ J

Tape 1 contents Tape 2 contents

“Shift” tape 2 to make room for tape 1 @

12/28



Non-deterministic Turing Machine

» Def: A non-deterministic Turing machine
is a normal TM, but it can make several
different choices at each step

» The transition function is
§:@xT =P(QxTx{LR})

» There are many possible computation paths for the
same string

» The machine accepts if at least one computation
path accepts

» Let's show non-deterministic TMs are
equivalent to deterministic TMs

» What are the two directions?
» Keep in mind that some computation paths may
not halt

13 /28



Non-deterministic Turing Machine

(=) If L is recognized by a deterministic TM, it can
be recognized by a non-deterministic TM

» Let M be the machine that recognizes L

» M is a non-determinstic TM that only has one
computation path

14 /28



Non-deterministic Turing Machine

(<) If L is recognized by a non-deterministic TM, it
can be recognized by a deterministic TM

» Let M be the non-deterministic TM that
recognizes L

» Design a deterministic TM called M; to
simulate M

» We run M, and try all possible computation
paths.

» If any computation path accepts, M, accepts,
otherwise it rejects

15 /28



Non-deterministic Turing Machine

WHAT/COULD

e =
POSSIBLY G0, wnmma? |




Non-deterministic Turing Machine
(«<=) If L is recognized by a non-deterministic TM, it
can be recognized by a deterministic TM
» Let M be the non-deterministic TM that
recognizes L
» Design a deterministic TM called M, to
simulate M
bW M. and ! bl :
paths-
We might get stuck on a path that loops
forever!
» If any computation path accepts, M, accepts,
otherwise it rejects

15 /28






Breadth-first search

Technique: We run M, and test out all possible
computation paths in parallel

» Keep track of all the current computation paths

» Run each current path for one step (rather
than running any one path to completion)

» ‘“breadth-first search”

16 / 28



Breadth-first search

|@ Accept @ REJECT —» Loop

Depth-first search Breadth-first search

We get stuck in a looping Advance all active paths in
computation before we get to try parallel, one step at a time; never
the accepting ones! get stuck going down one path

17 /28



Non-deterministic Turing Machine

(«<=) If L is recognized by a non-deterministic TM, it
can be recognized by a deterministic TM

» Let M be the non-deterministic TM that
recognizes L

» Design a deterministic TM called M, to
simulate M

» M, tries out all possible computation paths of
M in parallel

» If any computation path accepts ever, M,
accepts, otherwise it rejects

18 /28



Non-deterministic Turing Machine

Breadth-first search

@ ACCEPT

@ ResECT

—» Loop

Path 1 Path 2 Path 4

19 /28



Enumerator

Def: An enumerator is a Turing machine with an
attached printer

» At any point in time the TM may ask the
printer to print a string

20 /28



Enumerator
Def: An enumerator is a Turing machine with an
attached printer
» At any point in time the TM may ask the
printer to print a string

aa

baba
abba

Y

printer

control

Y
tol1]oo|u]... worktape

20 /28



Recursively Enumerable Languages

» Let L be a language, and let E be an
enumerator

» We say E enumerates L if E prints out every
string in L

» If we give the enumerator infinite time, it will
eventually print out every string in the language

» Def: If L can be enumerated, we say L is
recursively enumerable (RE)

21 /28



Recursively Enumerable Languages

Proposition: The following language is recursively
enumerable

L={p|p € N, pis prime}

1. Fori=0,1,2,...
1.1 Check if i is prime
1.2 If i is prime, print it out

22 /28



Recursively Enumerable Languages

Theorem: A language L is Turing-recognizable if
and only if L is recursively enumerable.

There are two directions:

1. If L is Turing-recognizable, there is an
enumerator E that enumerates L

2. If Lis RE, then some machine M can recognize
L

23 /28



Recursively Enumerable Languages

(=) If L is recursively enumerable, L is
Turing-recognizable
» We know some machine E enumerates L

» Design a machine M to recognize L
» On input w, do the following:

1. Run E to enumerate L
2. If E ever prints out w, then w € L so immediately

accept
3. If E never prints out w, then w ¢ L and M will run

forever (which is OK)

24 /28



Recursively Enumerable Languages

(<) If L is Turing-recognizable, then L is recursively

enumerable
» We know some machine M recognizes L

> If we L, M accepts w
» If w ¢ L then M rejects or loops

» We design a machine E to enumerate L
1. Go through all w € ¥* one at a time and run M

on each w
2. If M accepts w, print out w.
3. After processing w, move on the the next string

25 /28



Recursively Enumerable Languages

WHAT/COULD

e =
POSSIBLY G0, wnmma? |




Recursively Enumerable Languages

(<) If L is Turing-recognizable, then L is recursively
enumerable
» We know some machine M recognizes L

» If we L, M accepts w
» If w ¢ L then M rejects or loops

» We design a machine E to enumerate L

1. Go through all w € ¥* one at a time and run M
on each w

2. H-M-aceepts—w —print-outw-
This may run forever!
3. After processing w, move on the the next string

25 /28



Dovetailing

Technique: Run a machine M in parallel on all
possible strings through dovetailing.
> Let wi,wy,--- €L

» Let S(i,/) represent step i in M's computation
on string w;

1. Run 5(1,1)

2. Run S(1,2),5(2,1)

3. Run S(1,3), 5(2,2), S(3,1)

4. Run 5(1,4),5(2,3),5(3,2),5(4,1)

5. ...

26 /28



Dovetailing

—P» New “round” of computation steps

Input
String

Step 1| Step 2

Step 3

Step 4

Wi

J/

W,
W,
W,

.

27 /28



Recursively Enumerable Languages

(<) If L is Turing-recognizable, then L is recursively
enumerable
» We know some machine M recognizes L
» If we L, M accepts w
» If w ¢ L then M rejects or loops
» We design a machine E to enumerate L
1. Run M in parallel on all strings w € L*
(dovetailing)
2. Whenever M accepts a string w, print out w (but
keep running the other strings)

28 /28



