
Turing Machines

Arjun Chandrasekhar

1 / 41

History of Computer Science

I Euclidian algorithm for finding the gcd of two
integers; first known ‘algorithm’ (300 BC).

I Hilbert’s 10th problem: Given a Diophantine
equation with any number of variables and
integer coefficients: devise an algorithm to
determine (in finite time) whether the equation
has integer solutions (1900).

I Alan Turing (Turing Machines) (1936)

I Alonzo Church (Lambda Calculus) (1936)

I Church-Turing Thesis

2 / 41

History of Computer Science

I Euclidian algorithm for finding the gcd of two
integers; first known ‘algorithm’ (300 BC).

I Hilbert’s 10th problem: Given a Diophantine
equation with any number of variables and
integer coefficients: devise an algorithm to
determine (in finite time) whether the equation
has integer solutions (1900).

I Alan Turing (Turing Machines) (1936)

I Alonzo Church (Lambda Calculus) (1936)

I Church-Turing Thesis

2 / 41

History of Computer Science

I Euclidian algorithm for finding the gcd of two
integers; first known ‘algorithm’ (300 BC).

I Hilbert’s 10th problem: Given a Diophantine
equation with any number of variables and
integer coefficients: devise an algorithm to
determine (in finite time) whether the equation
has integer solutions (1900).

I Alan Turing (Turing Machines) (1936)

I Alonzo Church (Lambda Calculus) (1936)

I Church-Turing Thesis

2 / 41

History of Computer Science

I Euclidian algorithm for finding the gcd of two
integers; first known ‘algorithm’ (300 BC).

I Hilbert’s 10th problem: Given a Diophantine
equation with any number of variables and
integer coefficients: devise an algorithm to
determine (in finite time) whether the equation
has integer solutions (1900).

I Alan Turing (Turing Machines) (1936)

I Alonzo Church (Lambda Calculus) (1936)

I Church-Turing Thesis

2 / 41

History of Computer Science

I Euclidian algorithm for finding the gcd of two
integers; first known ‘algorithm’ (300 BC).

I Hilbert’s 10th problem: Given a Diophantine
equation with any number of variables and
integer coefficients: devise an algorithm to
determine (in finite time) whether the equation
has integer solutions (1900).

I Alan Turing (Turing Machines) (1936)

I Alonzo Church (Lambda Calculus) (1936)

I Church-Turing Thesis

2 / 41

History of Computer Science

I Euclidian algorithm for finding the gcd of two
integers; first known ‘algorithm’ (300 BC).

I Hilbert’s 10th problem: Given a Diophantine
equation with any number of variables and
integer coefficients: devise an algorithm to
determine (in finite time) whether the equation
has integer solutions (1900).

I Alan Turing (Turing Machines) (1936)

I Alonzo Church (Lambda Calculus) (1936)

I Church-Turing Thesis

2 / 41

Turing Machine

A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine
A new model of computation

I Tape consisting of infinitely many squares

I Tape head that can move around the tape one
square at a time

I Tape head can read from and write to the tape

I The tape head a state that it can change based
on what it reads

I The machine accepts if the tape head enters
the ‘accept state’

I The machine rejects if the tape head enters the
‘reject state’

3 / 41

Turing Machine Formal Description

Before you get stressed out by the next slide...

I You do NOT need to memorize the formal
definition of a TM

I I will NEVER ask you to give a formal
description - informal descriptions will suffice
on all assignments and exams

4 / 41

Turing Machine Formal Description

Before you get stressed out by the next slide...

I You do NOT need to memorize the formal
definition of a TM

I I will NEVER ask you to give a formal
description - informal descriptions will suffice
on all assignments and exams

4 / 41

Turing Machine Formal Description

Before you get stressed out by the next slide...

I You do NOT need to memorize the formal
definition of a TM

I I will NEVER ask you to give a formal
description - informal descriptions will suffice
on all assignments and exams

4 / 41

Turing Machine Formal Description

Before you get stressed out by the next slide...

I You do NOT need to memorize the formal
definition of a TM

I I will NEVER ask you to give a formal
description - informal descriptions will suffice
on all assignments and exams

4 / 41

Turing Machine Formal Description

A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Formal Description
A Turing Machine (TM) is a 7-tuple
(Q,Σ, Γ, δ, qs , qA, qR)

1. Q is the set of states

2. Σ is the input alphabet not containing the
blank symbol t

3. Γ is the tape alphabet. We require that
t ∈ Γ and Σ ⊆ Γ

4. δ : Q × Γ→ Q × Γ× {L,R} is the transition
function

5. qs ∈ Q is the start state

6. qA ∈ Q is the accept state

7. qR ∈ Q is the reject state

5 / 41

Turing Machine Computation

A TM computes as follows:

1. Input w is placed on the leftmost squares on
the tape (everything else is blank symbols t)

2. At each step, the tape head reads the character
on the current square

3. Based on the transition function, it changes to
a new state, writes a new character, and moves
left or right

4. This continues until the machine enters the
accept or reject state

6 / 41

Turing Machine Computation

A TM computes as follows:

1. Input w is placed on the leftmost squares on
the tape (everything else is blank symbols t)

2. At each step, the tape head reads the character
on the current square

3. Based on the transition function, it changes to
a new state, writes a new character, and moves
left or right

4. This continues until the machine enters the
accept or reject state

6 / 41

Turing Machine Computation

A TM computes as follows:

1. Input w is placed on the leftmost squares on
the tape (everything else is blank symbols t)

2. At each step, the tape head reads the character
on the current square

3. Based on the transition function, it changes to
a new state, writes a new character, and moves
left or right

4. This continues until the machine enters the
accept or reject state

6 / 41

Turing Machine Computation

A TM computes as follows:

1. Input w is placed on the leftmost squares on
the tape (everything else is blank symbols t)

2. At each step, the tape head reads the character
on the current square

3. Based on the transition function, it changes to
a new state, writes a new character, and moves
left or right

4. This continues until the machine enters the
accept or reject state

6 / 41

Turing Machine Computation

A TM computes as follows:

1. Input w is placed on the leftmost squares on
the tape (everything else is blank symbols t)

2. At each step, the tape head reads the character
on the current square

3. Based on the transition function, it changes to
a new state, writes a new character, and moves
left or right

4. This continues until the machine enters the
accept or reject state

6 / 41

Turing Machine Computation

A TM computes as follows:

1. Input w is placed on the leftmost squares on
the tape (everything else is blank symbols t)

2. At each step, the tape head reads the character
on the current square

3. Based on the transition function, it changes to
a new state, writes a new character, and moves
left or right

4. This continues until the machine enters the
accept or reject state

6 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗

1. Scan left to right

2. If we encounter a 1, immediately accept

3. If we encounter a blank space (i.e. end of
input), reject

7 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗

1. Scan left to right

2. If we encounter a 1, immediately accept

3. If we encounter a blank space (i.e. end of
input), reject

7 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗

1. Scan left to right

2. If we encounter a 1, immediately accept

3. If we encounter a blank space (i.e. end of
input), reject

7 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗

1. Scan left to right

2. If we encounter a 1, immediately accept

3. If we encounter a blank space (i.e. end of
input), reject

7 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗ (formal definition)

1. Q = {q0, qA, qR}
2. Σ = {0, 1}, Γ = {0, 1,t}
3. δ(q0, 0) = (q0, 0,R)
δ(q0, 1) = (qA, 1,R)
δ(q0,t) = (qR ,t, L)

4. qs = q0, qA = qA, qR = qR
What does this machine do on 010? 00?

8 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗ (formal definition)

1. Q = {q0, qA, qR}

2. Σ = {0, 1}, Γ = {0, 1,t}
3. δ(q0, 0) = (q0, 0,R)
δ(q0, 1) = (qA, 1,R)
δ(q0,t) = (qR ,t, L)

4. qs = q0, qA = qA, qR = qR
What does this machine do on 010? 00?

8 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗ (formal definition)

1. Q = {q0, qA, qR}
2. Σ = {0, 1}, Γ = {0, 1,t}

3. δ(q0, 0) = (q0, 0,R)
δ(q0, 1) = (qA, 1,R)
δ(q0,t) = (qR ,t, L)

4. qs = q0, qA = qA, qR = qR
What does this machine do on 010? 00?

8 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗ (formal definition)

1. Q = {q0, qA, qR}
2. Σ = {0, 1}, Γ = {0, 1,t}
3. δ(q0, 0) = (q0, 0,R)
δ(q0, 1) = (qA, 1,R)
δ(q0,t) = (qR ,t, L)

4. qs = q0, qA = qA, qR = qR
What does this machine do on 010? 00?

8 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗ (formal definition)

1. Q = {q0, qA, qR}
2. Σ = {0, 1}, Γ = {0, 1,t}
3. δ(q0, 0) = (q0, 0,R)
δ(q0, 1) = (qA, 1,R)
δ(q0,t) = (qR ,t, L)

4. qs = q0, qA = qA, qR = qR

What does this machine do on 010? 00?

8 / 41

Turing Machine Example

A machine to recognize Σ∗1Σ∗ (formal definition)

1. Q = {q0, qA, qR}
2. Σ = {0, 1}, Γ = {0, 1,t}
3. δ(q0, 0) = (q0, 0,R)
δ(q0, 1) = (qA, 1,R)
δ(q0,t) = (qR ,t, L)

4. qs = q0, qA = qA, qR = qR
What does this machine do on 010? 00?

8 / 41

Turing Machine Configuration

I Over time, the TM changes three things: the
tape head state, the tape contents, and the
tape head location

I A TM configuration is a formal way of
describing the overall state of the machine

9 / 41

Turing Machine Configuration

I Over time, the TM changes three things: the
tape head state, the tape contents, and the
tape head location

I A TM configuration is a formal way of
describing the overall state of the machine

9 / 41

Turing Machine Configuration

I Over time, the TM changes three things: the
tape head state, the tape contents, and the
tape head location

I A TM configuration is a formal way of
describing the overall state of the machine

9 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet
I We write the configuration C = uqv to denote:

1. The current tape head state is q
2. The tape contains uv
3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet
I We write the configuration C = uqv to denote:

1. The current tape head state is q
2. The tape contains uv
3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet

I We write the configuration C = uqv to denote:

1. The current tape head state is q
2. The tape contains uv
3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet
I We write the configuration C = uqv to denote:

1. The current tape head state is q
2. The tape contains uv
3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet
I We write the configuration C = uqv to denote:

1. The current tape head state is q

2. The tape contains uv
3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet
I We write the configuration C = uqv to denote:

1. The current tape head state is q
2. The tape contains uv

3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

I Let q ∈ Q be a state

I Let u, v ∈ Γ∗ be strings from the tape alphabet
I We write the configuration C = uqv to denote:

1. The current tape head state is q
2. The tape contains uv
3. The tape head is on the first symbol of v

10 / 41

Turing Machine Configuration

What is the TM state in this configuration?

1011q701111

The TM is in state q7

11 / 41

Turing Machine Configuration

What is the TM state in this configuration?

1011q701111

The TM is in state q7

11 / 41

Turing Machine Configuration

What are the tape contents in this configuration?

1011q701111

The tape contents are 101101111

12 / 41

Turing Machine Configuration

What are the tape contents in this configuration?

1011q701111

The tape contents are 101101111

12 / 41

Turing Machine Configuration

Where is the TM head in this configuration?

1011q701111

The TM is on top of the second 0

13 / 41

Turing Machine Configuration

Where is the TM head in this configuration?

1011q701111

The TM is on top of the second 0

13 / 41

TM Computation (Formal Definition)

We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q

I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)

I “If the machine is reads b from state qi , write c,
transition to state qj and move right”

14 / 41

TM Computation (Formal Definition)
We say configuration C1 yields configuration C2 if
the TM can legally go from C1 to C2 in a single
step.

I Let a, b, c ∈ Γ

I Let u, v ∈ Γ∗

I Let qi , qj ∈ Q
I uaqibv yields uqjacv if δ(qi , b) = (qj , c , L)

I “If the machine is reads b from state qi , write c,
transition to state qj and move left”

I uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R)
I “If the machine is reads b from state qi , write c,

transition to state qj and move right”

14 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration

2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Acceptance

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qA is an
accepting configuration

I A Turing Machine M accepts input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is an accepting configuration

15 / 41

Turing Machine Rejection

I The start configuration of M on input w is
the configuration q0w

I Any configuration that includes qR is a
rejecting configuration

I A Turing Machine M rejects input w if there
are a sequence of configurations C1,C2, . . . ,Cn
where

1. Ci is the start configuration
2. Each Ci yields Ci+1

3. Cn is a rejecting configuration

16 / 41

Turing Machine Computation

Some notes

I Unlike automata, a TM does not have to read
characters one by one; it starts with the entire
input on the tape, and it may move around
freely

I If the machine is at the left end of the tape
and it tries to move left, it stays in place

17 / 41

Turing Machine Computation

Some notes

I Unlike automata, a TM does not have to read
characters one by one; it starts with the entire
input on the tape, and it may move around
freely

I If the machine is at the left end of the tape
and it tries to move left, it stays in place

17 / 41

Turing Machine Computation

Some notes

I Unlike automata, a TM does not have to read
characters one by one; it starts with the entire
input on the tape, and it may move around
freely

I If the machine is at the left end of the tape
and it tries to move left, it stays in place

17 / 41

Turing Machine Example
What does the following TM do on the input ε?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept

B. Reject

X

C. Loop

18 / 41

Turing Machine Example
What does the following TM do on the input ε?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept

B. Reject X

C. Loop

18 / 41

Turing Machine Example
What does the following TM do on the input 000?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept

B. Reject

C. Loop

X

19 / 41

Turing Machine Example
What does the following TM do on the input 000?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept

B. Reject

C. Loop X

19 / 41

Turing Machine Example
What does the following TM do on the input 111?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept

X

B. Reject

C. Loop

20 / 41

Turing Machine Example
What does the following TM do on the input 111?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept X

B. Reject

C. Loop

20 / 41

Turing Machine Example
What does the following TM do on the input 101?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept

X

B. Reject

C. Loop

21 / 41

Turing Machine Example
What does the following TM do on the input 101?

State 0 1 t
q0 (start) 0→ q1 1→ q2 t → qreject

q1 0→ q1 1→ q1 t → q1
q2 0→ q2 1→ q2 t → qaccept

A. Accept X

B. Reject

C. Loop

21 / 41

Turing Machine Halting

A Turing machine halts on input w if it accepts or
rejects w

I The machine doesn’t simply read each
character once - it can go back and forth

I THERE IS NO INHERENT GUARANTEE
THAT A TURING MACHINE WILL HALT

22 / 41

Turing Machine Halting

A Turing machine halts on input w if it accepts or
rejects w

I The machine doesn’t simply read each
character once - it can go back and forth

I THERE IS NO INHERENT GUARANTEE
THAT A TURING MACHINE WILL HALT

22 / 41

Turing Machine Halting

A Turing machine halts on input w if it accepts or
rejects w

I The machine doesn’t simply read each
character once - it can go back and forth

I THERE IS NO INHERENT GUARANTEE
THAT A TURING MACHINE WILL HALT

22 / 41

Turing Machine Halting

A Turing machine halts on input w if it accepts or
rejects w

I The machine doesn’t simply read each
character once - it can go back and forth

I THERE IS NO INHERENT GUARANTEE
THAT A TURING MACHINE WILL HALT

22 / 41

Turing Machine Descriptions

There are three different ways we can describe a
Turing machine

1. High level description

2. Tape/implementation level description

3. Formal description

23 / 41

Turing Machine Descriptions

There are three different ways we can describe a
Turing machine

1. High level description

2. Tape/implementation level description

3. Formal description

23 / 41

Turing Machine Descriptions

There are three different ways we can describe a
Turing machine

1. High level description

2. Tape/implementation level description

3. Formal description

23 / 41

Turing Machine Descriptions

There are three different ways we can describe a
Turing machine

1. High level description

2. Tape/implementation level description

3. Formal description

23 / 41

Turing Machine Descriptions

There are three different ways we can describe a
Turing machine

1. High level description

2. Tape/implementation level description

3. Formal description

23 / 41

High Level Description

Clear, English description of the algorithm to solve
the problem, but does not describe how to
specifically implement it on a Turing machine

24 / 41

Tape Level Description

Clear description of how the Turing machine moves
around and manipulates the tape, and when it
accepts/rejects, but doesn’t describe every
individual state and transition

25 / 41

Formal Description

Describes every single state and every single
transition

26 / 41

Turing Machine Example

Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}

High level description:

1. Base Case: if w = ε then accept

2. Recursive Case: if |w | = n ≥ 1, check if the
first and last character match. If they do, erase
them, and recurse on all the middle characters
characters.

27 / 41

Turing Machine Example

Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}

High level description:

1. Base Case: if w = ε then accept

2. Recursive Case: if |w | = n ≥ 1, check if the
first and last character match. If they do, erase
them, and recurse on all the middle characters
characters.

27 / 41

Turing Machine Example

Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}

High level description:

1. Base Case: if w = ε then accept

2. Recursive Case: if |w | = n ≥ 1, check if the
first and last character match. If they do, erase
them, and recurse on all the middle characters
characters.

27 / 41

Turing Machine Example

Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}

High level description:

1. Base Case: if w = ε then accept

2. Recursive Case: if |w | = n ≥ 1, check if the
first and last character match. If they do, erase
them, and recurse on all the middle characters
characters.

27 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}
Tape level description:

1. Read the left-most character, remember it
(through the state), and erase it

2. Scan until the end of the input (i.e. when you
reach a blank) and check if the character at
the end matches the character you read at the
start

2.1 If so, erase it, go back to the start and repeat
2.2 If not, reject immediately

3. Once the tape is blank, accept

28 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}
Tape level description:

1. Read the left-most character, remember it
(through the state), and erase it

2. Scan until the end of the input (i.e. when you
reach a blank) and check if the character at
the end matches the character you read at the
start

2.1 If so, erase it, go back to the start and repeat
2.2 If not, reject immediately

3. Once the tape is blank, accept

28 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}
Tape level description:

1. Read the left-most character, remember it
(through the state), and erase it

2. Scan until the end of the input (i.e. when you
reach a blank) and check if the character at
the end matches the character you read at the
start

2.1 If so, erase it, go back to the start and repeat
2.2 If not, reject immediately

3. Once the tape is blank, accept

28 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}
Tape level description:

1. Read the left-most character, remember it
(through the state), and erase it

2. Scan until the end of the input (i.e. when you
reach a blank) and check if the character at
the end matches the character you read at the
start

2.1 If so, erase it, go back to the start and repeat

2.2 If not, reject immediately

3. Once the tape is blank, accept

28 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}
Tape level description:

1. Read the left-most character, remember it
(through the state), and erase it

2. Scan until the end of the input (i.e. when you
reach a blank) and check if the character at
the end matches the character you read at the
start

2.1 If so, erase it, go back to the start and repeat
2.2 If not, reject immediately

3. Once the tape is blank, accept

28 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}
Tape level description:

1. Read the left-most character, remember it
(through the state), and erase it

2. Scan until the end of the input (i.e. when you
reach a blank) and check if the character at
the end matches the character you read at the
start

2.1 If so, erase it, go back to the start and repeat
2.2 If not, reject immediately

3. Once the tape is blank, accept
28 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}

Formal description:

a b t
qs (start) t → qa t → qb t → qaccept

qa a→ qa b → qa t ← qa∗
qb a→ qb b → qb t ← qb∗
qa∗ t ← qs∗ t ← qreject t ← qs∗
qb∗ t ← qreject t ← qs∗ t ← qs∗
qs∗ a← qs∗ b ← qs∗ t → qs

29 / 41

Turing Machine Example
Let’s design a Turing machine to recognize the
language of palindromes

L = {w ∈ {a, b}∗|w = wR}

Formal description:

a b t
qs (start) t → qa t → qb t → qaccept

qa a→ qa b → qa t ← qa∗
qb a→ qb b → qb t ← qb∗
qa∗ t ← qs∗ t ← qreject t ← qs∗
qb∗ t ← qreject t ← qs∗ t ← qs∗
qs∗ a← qs∗ b ← qs∗ t → qs

29 / 41

The language of a TM

Let M be a TM. We say the language of M ,
denoted L(M), is the set of strings that are
accepted by M

30 / 41

The language of a TM

Let M be a TM. We say the language of M ,
denoted L(M), is the set of strings that are
accepted by M

30 / 41

Turing-Decidable Languages

I We say M decides L if

1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M halts and rejects w

I Note that M should halt on all inputs

I We say L is Turing-Decidable, or simply
Decidable

31 / 41

Turing-Decidable Languages

I We say M decides L if

1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M halts and rejects w

I Note that M should halt on all inputs

I We say L is Turing-Decidable, or simply
Decidable

31 / 41

Turing-Decidable Languages

I We say M decides L if
1. If w ∈ L, M halts and accepts w

2. If w /∈ L, M halts and rejects w

I Note that M should halt on all inputs

I We say L is Turing-Decidable, or simply
Decidable

31 / 41

Turing-Decidable Languages

I We say M decides L if
1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M halts and rejects w

I Note that M should halt on all inputs

I We say L is Turing-Decidable, or simply
Decidable

31 / 41

Turing-Decidable Languages

I We say M decides L if
1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M halts and rejects w

I Note that M should halt on all inputs

I We say L is Turing-Decidable, or simply
Decidable

31 / 41

Turing-Decidable Languages

I We say M decides L if
1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M halts and rejects w

I Note that M should halt on all inputs

I We say L is Turing-Decidable, or simply
Decidable

31 / 41

Turing-Recognizable Languages

I We say M recognizes L if L(M) = L. That is,

1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M does not accept w . This could mean

M halts and rejects, or M loops forever.

I Note that M is only guaranteed to halt if the
input is in the language.

I We say L is Turing-recognizable, or simply
Recognizable.

32 / 41

Turing-Recognizable Languages

I We say M recognizes L if L(M) = L. That is,

1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M does not accept w . This could mean

M halts and rejects, or M loops forever.

I Note that M is only guaranteed to halt if the
input is in the language.

I We say L is Turing-recognizable, or simply
Recognizable.

32 / 41

Turing-Recognizable Languages

I We say M recognizes L if L(M) = L. That is,
1. If w ∈ L, M halts and accepts w

2. If w /∈ L, M does not accept w . This could mean
M halts and rejects, or M loops forever.

I Note that M is only guaranteed to halt if the
input is in the language.

I We say L is Turing-recognizable, or simply
Recognizable.

32 / 41

Turing-Recognizable Languages

I We say M recognizes L if L(M) = L. That is,
1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M does not accept w . This could mean

M halts and rejects, or M loops forever.

I Note that M is only guaranteed to halt if the
input is in the language.

I We say L is Turing-recognizable, or simply
Recognizable.

32 / 41

Turing-Recognizable Languages

I We say M recognizes L if L(M) = L. That is,
1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M does not accept w . This could mean

M halts and rejects, or M loops forever.

I Note that M is only guaranteed to halt if the
input is in the language.

I We say L is Turing-recognizable, or simply
Recognizable.

32 / 41

Turing-Recognizable Languages

I We say M recognizes L if L(M) = L. That is,
1. If w ∈ L, M halts and accepts w
2. If w /∈ L, M does not accept w . This could mean

M halts and rejects, or M loops forever.

I Note that M is only guaranteed to halt if the
input is in the language.

I We say L is Turing-recognizable, or simply
Recognizable.

32 / 41

Turing-Recognizable Languages

I For DFAs, NFAs, PDAs, etc. we have used the
terms “decide” and “recognize”
interchangeably

I This is because there is no risk of these machines
looping forever

I In my defense, I did not make create this
convention, I just follow it

I With Turing-machines, we have to explicitly
distinguish between deciding and recognizing a
language.

33 / 41

Turing-Recognizable Languages

I For DFAs, NFAs, PDAs, etc. we have used the
terms “decide” and “recognize”
interchangeably

I This is because there is no risk of these machines
looping forever

I In my defense, I did not make create this
convention, I just follow it

I With Turing-machines, we have to explicitly
distinguish between deciding and recognizing a
language.

33 / 41

Turing-Recognizable Languages

I For DFAs, NFAs, PDAs, etc. we have used the
terms “decide” and “recognize”
interchangeably
I This is because there is no risk of these machines

looping forever

I In my defense, I did not make create this
convention, I just follow it

I With Turing-machines, we have to explicitly
distinguish between deciding and recognizing a
language.

33 / 41

Turing-Recognizable Languages

I For DFAs, NFAs, PDAs, etc. we have used the
terms “decide” and “recognize”
interchangeably
I This is because there is no risk of these machines

looping forever
I In my defense, I did not make create this

convention, I just follow it

I With Turing-machines, we have to explicitly
distinguish between deciding and recognizing a
language.

33 / 41

Turing-Recognizable Languages

I For DFAs, NFAs, PDAs, etc. we have used the
terms “decide” and “recognize”
interchangeably
I This is because there is no risk of these machines

looping forever
I In my defense, I did not make create this

convention, I just follow it

I With Turing-machines, we have to explicitly
distinguish between deciding and recognizing a
language.

33 / 41

Turing Machines

Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }

I The tape level description could could take
awhile to write out...

I ...to say nothing of the formal description!

34 / 41

Turing Machines

Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }

I The tape level description could could take
awhile to write out...

I ...to say nothing of the formal description!

34 / 41

Turing Machines

Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }

I The tape level description could could take
awhile to write out...

I ...to say nothing of the formal description!

34 / 41

Turing Machines

Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }

I The tape level description could could take
awhile to write out...

I ...to say nothing of the formal description!

34 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.

I We have yet to define a machine or programming
language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.

I We have yet to define a machine or programming
language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.

I We have yet to define a machine or programming
language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.

I We have yet to define a machine or programming
language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.

I We have yet to define a machine or programming
language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.

I We have yet to define a machine or programming
language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

I In 1936, Turing came up with the Turing
machine while Alonzo Church simultaneously
invented lambda calculus

I Turing showed that these two formulations
described the same class of functions.

I Since then, several other models of
computation have been proposed, and they all
turned out to be equivalent to Turing
machines.
I We have yet to define a machine or programming

language that is more powerful than a Turing
machine

35 / 41

Church-Turing Thesis

The Church-Turing Thesis states that Turing
machines (and all equivalent models) correspond
our intuitive notion of what an “algorithm” is

I Any task that can be solved using a mechanical
procedure can be solved using a Turing
machine

I This is not a theorem or even a mathematically
precise statement - but we accept it as true
because we have yet to find any satisfying
counterexamples

36 / 41

Church-Turing Thesis

The Church-Turing Thesis states that Turing
machines (and all equivalent models) correspond
our intuitive notion of what an “algorithm” is

I Any task that can be solved using a mechanical
procedure can be solved using a Turing
machine

I This is not a theorem or even a mathematically
precise statement - but we accept it as true
because we have yet to find any satisfying
counterexamples

36 / 41

Church-Turing Thesis

The Church-Turing Thesis states that Turing
machines (and all equivalent models) correspond
our intuitive notion of what an “algorithm” is

I Any task that can be solved using a mechanical
procedure can be solved using a Turing
machine

I This is not a theorem or even a mathematically
precise statement - but we accept it as true
because we have yet to find any satisfying
counterexamples

36 / 41

Church-Turing Thesis

The Church-Turing Thesis states that Turing
machines (and all equivalent models) correspond
our intuitive notion of what an “algorithm” is

I Any task that can be solved using a mechanical
procedure can be solved using a Turing
machine

I This is not a theorem or even a mathematically
precise statement - but we accept it as true
because we have yet to find any satisfying
counterexamples

36 / 41

Church-Turing Thesis

I To show that a language can be decided or
recognized by a Turing machine, a high-level
algorithmic description will suffice

I We can appeal to the Church-Turing thesis so
say that whatever algorithm we describe can be
implemented on a TM

I No more tedious formal descriptions

I We still use tape-level descriptions to show
that a new machine is equivalent to a TM

37 / 41

Church-Turing Thesis

I To show that a language can be decided or
recognized by a Turing machine, a high-level
algorithmic description will suffice

I We can appeal to the Church-Turing thesis so
say that whatever algorithm we describe can be
implemented on a TM

I No more tedious formal descriptions

I We still use tape-level descriptions to show
that a new machine is equivalent to a TM

37 / 41

Church-Turing Thesis

I To show that a language can be decided or
recognized by a Turing machine, a high-level
algorithmic description will suffice

I We can appeal to the Church-Turing thesis so
say that whatever algorithm we describe can be
implemented on a TM

I No more tedious formal descriptions

I We still use tape-level descriptions to show
that a new machine is equivalent to a TM

37 / 41

Church-Turing Thesis

I To show that a language can be decided or
recognized by a Turing machine, a high-level
algorithmic description will suffice

I We can appeal to the Church-Turing thesis so
say that whatever algorithm we describe can be
implemented on a TM

I No more tedious formal descriptions

I We still use tape-level descriptions to show
that a new machine is equivalent to a TM

37 / 41

Turing Machines
Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }

We can decide L with the following algorithm
1. Loop through every pair of nodes u, v and

check that they are connected by an edge
2. If any two nodes are not connected, reject
3. If we find that every pair of nodes is connected,

accept
By the Church-Turing thesis we can implement this
algorithm on a TM. This algorithm will always halt.
Thus L is Turing-decidable.

38 / 41

Turing Machines
Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }
We can decide L with the following algorithm

1. Loop through every pair of nodes u, v and
check that they are connected by an edge

2. If any two nodes are not connected, reject
3. If we find that every pair of nodes is connected,

accept
By the Church-Turing thesis we can implement this
algorithm on a TM. This algorithm will always halt.
Thus L is Turing-decidable.

38 / 41

Turing Machines
Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }
We can decide L with the following algorithm

1. Loop through every pair of nodes u, v and
check that they are connected by an edge

2. If any two nodes are not connected, reject
3. If we find that every pair of nodes is connected,

accept
By the Church-Turing thesis we can implement this
algorithm on a TM. This algorithm will always halt.
Thus L is Turing-decidable.

38 / 41

Turing Machines
Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }
We can decide L with the following algorithm

1. Loop through every pair of nodes u, v and
check that they are connected by an edge

2. If any two nodes are not connected, reject

3. If we find that every pair of nodes is connected,
accept

By the Church-Turing thesis we can implement this
algorithm on a TM. This algorithm will always halt.
Thus L is Turing-decidable.

38 / 41

Turing Machines
Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }
We can decide L with the following algorithm

1. Loop through every pair of nodes u, v and
check that they are connected by an edge

2. If any two nodes are not connected, reject
3. If we find that every pair of nodes is connected,

accept

By the Church-Turing thesis we can implement this
algorithm on a TM. This algorithm will always halt.
Thus L is Turing-decidable.

38 / 41

Turing Machines
Let’s show that the following language is
Turing-decidable

L = {〈G 〉|G is a complete graph }
We can decide L with the following algorithm

1. Loop through every pair of nodes u, v and
check that they are connected by an edge

2. If any two nodes are not connected, reject
3. If we find that every pair of nodes is connected,

accept
By the Church-Turing thesis we can implement this
algorithm on a TM. This algorithm will always halt.
Thus L is Turing-decidable.

38 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

I This will demonstrate that Turing machines are
strictly more powerful than any other machine
we’ve covered

I For practice, let’s give both a high-level
description and a tape-level description

39 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

I This will demonstrate that Turing machines are
strictly more powerful than any other machine
we’ve covered

I For practice, let’s give both a high-level
description and a tape-level description

39 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

I This will demonstrate that Turing machines are
strictly more powerful than any other machine
we’ve covered

I For practice, let’s give both a high-level
description and a tape-level description

39 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

High level description:

1. Make sure the a’s, b’s, and c’s are in the right
order

2. Count the a’s, b’s, and c’s. If they are equal,
accept. Otherwise, reject.

40 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

High level description:

1. Make sure the a’s, b’s, and c’s are in the right
order

2. Count the a’s, b’s, and c’s. If they are equal,
accept. Otherwise, reject.

40 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

High level description:

1. Make sure the a’s, b’s, and c’s are in the right
order

2. Count the a’s, b’s, and c’s. If they are equal,
accept. Otherwise, reject.

40 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

Tape level description

1. Scan left to right and check that a’s, b’s, and
c’s are in the right order. If not, reject.

2. Find the left-most a and erase it. Scan right in
search of a matching b and a matching c .

2.1 If we find the matching b and c , erase them and
repeat the process.

2.2 If we don’t find the matching b and c , reject

3. If the tape becomes empty, accept.

41 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

Tape level description

1. Scan left to right and check that a’s, b’s, and
c’s are in the right order. If not, reject.

2. Find the left-most a and erase it. Scan right in
search of a matching b and a matching c .

2.1 If we find the matching b and c , erase them and
repeat the process.

2.2 If we don’t find the matching b and c , reject

3. If the tape becomes empty, accept.

41 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

Tape level description

1. Scan left to right and check that a’s, b’s, and
c’s are in the right order. If not, reject.

2. Find the left-most a and erase it. Scan right in
search of a matching b and a matching c .

2.1 If we find the matching b and c , erase them and
repeat the process.

2.2 If we don’t find the matching b and c , reject

3. If the tape becomes empty, accept.

41 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

Tape level description

1. Scan left to right and check that a’s, b’s, and
c’s are in the right order. If not, reject.

2. Find the left-most a and erase it. Scan right in
search of a matching b and a matching c .

2.1 If we find the matching b and c , erase them and
repeat the process.

2.2 If we don’t find the matching b and c , reject

3. If the tape becomes empty, accept.

41 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

Tape level description

1. Scan left to right and check that a’s, b’s, and
c’s are in the right order. If not, reject.

2. Find the left-most a and erase it. Scan right in
search of a matching b and a matching c .

2.1 If we find the matching b and c , erase them and
repeat the process.

2.2 If we don’t find the matching b and c , reject

3. If the tape becomes empty, accept.

41 / 41

Turing Machine Example

Let’s show that {anbncn|n ≥ 0} is Turing-decidable

Tape level description

1. Scan left to right and check that a’s, b’s, and
c’s are in the right order. If not, reject.

2. Find the left-most a and erase it. Scan right in
search of a matching b and a matching c .

2.1 If we find the matching b and c , erase them and
repeat the process.

2.2 If we don’t find the matching b and c , reject

3. If the tape becomes empty, accept.

41 / 41

