Theory of Computation Turing Reducibility

Arjun Chandrasekhar

Can we write a java program that creates another java program?

- Can we write a java program that creates another java program?
- Can we decide what the new program should do based on what command line argument the original program received?

- Can we write a java program that creates another java program?
- Can we decide what the new program should do based on what command line argument the original program received?
- After creating a new program, can we analyze that program?

Consider the program makeProgram.java

- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input

- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. makeProgram.java creates a java source code file called oneString.java

- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. makeProgram.java creates a java source code file called oneString.java
 - 2.1 oneString.java takes an input string s

- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - makeProgram.java creates a java source code file called oneString.java
 - 2.1 oneString.java takes an input string s
 - 2.2 print ACCEPT if s = w print REJECT if $s \neq w$ Note that w is a hard-coded constant

Let's say we have a program called even.java

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. Creates a java source code file called oneString.java

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. Creates a java source code file called oneString.java
 - 2.1 oneString.java takes an input string s

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. Creates a java source code file called oneString.java
 - 2.1 oneString.java takes an input string s
 - 2.2 print ACCEPT if s = w print REJECT if $s \neq w$ Note that w is a hard-coded constant

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. Creates a java source code file called oneString.java
 - 2.1 oneString.java takes an input string s
 - 2.2 print ACCEPT if s = w print REJECT if $s \neq w$ Note that w is a hard-coded constant
 - 3. run even.java on oneString.java

- Let's say we have a program called even.java
 - even.java checks if another source code file has an even number of characters
- Consider the program makeProgram.java
 - 1. makeProgram.java takes a string w as input
 - 2. Creates a java source code file called oneString.java
 - 2.1 oneString.java takes an input string s
 - 2.2 print ACCEPT if s = wprint REJECT if $s \neq w$ Note that w is a hard-coded constant
 - 3. run even.java on oneString.java

I've put the code on the course website (in python)

"If I can solve problem B, then I can solve problem A."

- "If I can solve problem B, then I can solve problem A."
- "So solving problem B is at least as hard as solving problem A"

▶ If I can obtain a job, I can earn some money

- If I can obtain a job, I can earn some money
 - ► The problem of earning money can be reduced to the problem of obtaining a job

- ▶ If I can obtain a job, I can earn some money
- ▶ If I can get to Los Angeles, I can obtain a job

- If I can obtain a job, I can earn some money
- If I can get to Los Angeles, I can obtain a job
 - ► The problem of obtaining a job can be reduced to the problem of getting to Los Angeles

- ▶ If I can obtain a job, I can earn some money
- ▶ If I can get to Los Angeles, I can obtain a job
- If I can find a map to Los Angeles, I can get to Los Angeles

- If I can obtain a job, I can earn some money
- If I can get to Los Angeles, I can obtain a job
- ▶ If I can find a map to Los Angeles, I can get to Los Angeles
 - The problem of getting to Los Angeles can be reduced to the problem of finding a map to Los Angeles

- ▶ If I can obtain a job, I can earn some money
- ▶ If I can get to Los Angeles, I can obtain a job
- ▶ If I can find a map to Los Angeles, I can get to Los Angeles
- The problem of earning money can be reduced to the problem of finding a map to Los Angeles

► The problem of earning money can be reduced to the problem of finding a map to Los Angeles

- The problem of earning money can be reduced to the problem of finding a map to Los Angeles
- Suppose I find a map to Los Angeles

- The problem of earning money can be reduced to the problem of finding a map to Los Angeles
- Suppose I find a map to Los Angeles

- The problem of earning money can be reduced to the problem of finding a map to Los Angeles
- Suppose I find a map to Los Angeles

Can I start earning money?

Reducibility and Impossibility

If I can obtain the Marauder's Map, I can get to Hogsmead

Reducibility and Impossibility

- If I can obtain the Marauder's Map, I can get to Hogsmead
 - ► The problem of getting to Hogsmead can be reduced to the problem of obtaining the Marauder's Map

- If I can obtain the Marauder's Map, I can get to Hogsmead
 - ► The problem of getting to Hogsmead can be reduced to the problem of obtaining the Marauder's Map

- If I can obtain the Marauder's Map, I can get to Hogsmead
 - The problem of getting to Hogsmead can be reduced to the problem of obtaining the Marauder's Map

When we make this statement, we are not claiming that it is possible to actually obtain the Marauder's map. We are just considering the hypothetical scenario in which we could obtain it.

- If I can obtain the Marauder's Map, I can get to Hogsmead
- Now let's say I convince you that getting to Hogsmead is impossible (because it's a fictional place)

- ▶ If I can obtain the Marauder's Map, I can get to Hogsmead
- Now let's say I convince you that getting to Hogsmead is impossible (because it's a fictional place)
- ► Then you would conclude that obtaining the Marauder's Map is also impossible

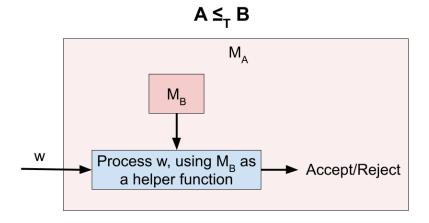
- ▶ If I can obtain the Marauder's Map, I can get to Hogsmead
- Now let's say I convince you that getting to Hogsmead is impossible (because it's a fictional place)
- Then you would conclude that obtaining the Marauder's Map is also impossible
 - Otherwise we would be able to do something we know is impossible

 \triangleright Let A and B be formal languages

- ► Let A and B be formal languages
- Suppose that we prove that if there were a machine M_B to decide B, then we could construct a machine M_A to decide A

- ▶ Let A and B be formal languages
- Suppose that we prove that if there were a machine M_B to decide B, then we could construct a machine M_A to decide A
- ► Then we say A is Turing reducible (or simply reducible) to B

- ▶ Let A and B be formal languages
- Suppose that we prove that if there were a machine M_B to decide B, then we could construct a machine M_A to decide A
- ► Then we say A is Turing reducible (or simply reducible) to B
 - ▶ We use the notation $A \leq_T B$



If we can decide B, we can decide A

Let's prove that $EVEN \leq_T ODD$

$$EVEN = \{w | w \in \mathbb{N}, w \text{ is even}\}$$
$$ODD = \{w | w \in \mathbb{N}, w \text{ is odd}\}$$

Suppose we have a machine $M_{\rm ODD}$ that decides ODD. We need to construct a machine $M_{\rm EVEN}$ that decides EVEN

Let's prove that $EVEN \leq_T ODD$

$$EVEN = \{w | w \in \mathbb{N}, w \text{ is even}\}$$
$$ODD = \{w | w \in \mathbb{N}, w \text{ is odd}\}$$

Suppose we have a machine $M_{\rm ODD}$ that decides ${\rm ODD}$. We need to construct a machine $M_{\rm EVEN}$ that decides ${\rm EVEN}$

▶ Note that n is even $\Leftrightarrow n$ is not odd

Let's prove that $EVEN \leq_T ODD$

$$EVEN = \{w | w \in \mathbb{N}, w \text{ is even}\}$$
$$ODD = \{w | w \in \mathbb{N}, w \text{ is odd}\}$$

Suppose we have a machine $M_{\rm ODD}$ that decides ODD. We need to construct a machine $M_{\rm EVEN}$ that decides EVEN

1. M_{EVEN} takes an integer $n \in \mathbb{N}$ as input

Let's prove that $EVEN \leq_T ODD$

$$EVEN = \{w | w \in \mathbb{N}, w \text{ is even}\}$$
$$ODD = \{w | w \in \mathbb{N}, w \text{ is odd}\}$$

Suppose we have a machine $M_{\rm ODD}$ that decides ODD. We need to construct a machine $M_{\rm EVEN}$ that decides EVEN

- 1. M_{EVEN} takes an integer $n \in \mathbb{N}$ as input
- 2. M_{EVEN} runs M_{ODD} on n

Let's prove that $EVEN \leq_T ODD$

$$EVEN = \{w | w \in \mathbb{N}, w \text{ is even}\}$$
$$ODD = \{w | w \in \mathbb{N}, w \text{ is odd}\}$$

Suppose we have a machine $M_{\rm ODD}$ that decides ${\rm ODD}$. We need to construct a machine $M_{\rm EVEN}$ that decides ${\rm EVEN}$

- 1. M_{EVEN} takes an integer $n \in \mathbb{N}$ as input
- 2. M_{EVEN} runs M_{ODD} on n
 - 2.1 If $M_{\rm ODD}$ accepts n, then $M_{\rm EVEN}$ rejects n

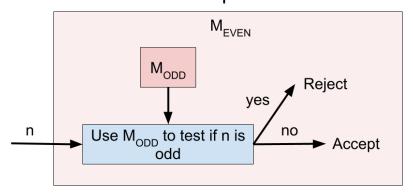
Let's prove that $EVEN \leq_T ODD$

$$EVEN = \{w | w \in \mathbb{N}, w \text{ is even}\}$$
$$ODD = \{w | w \in \mathbb{N}, w \text{ is odd}\}$$

Suppose we have a machine $M_{\rm ODD}$ that decides ODD. We need to construct a machine $M_{\rm EVEN}$ that decides EVEN

- 1. M_{EVEN} takes an integer $n \in \mathbb{N}$ as input
- 2. M_{EVEN} runs M_{ODD} on n
 - 2.1 If $M_{\rm ODD}$ accepts n, then $M_{\rm EVEN}$ rejects n
 - 2.2 If M_{ODD} rejects *n* then M_{EVEN} accepts *n*

EVEN ≤, ODD



If we can decide ODD, we can decide EVEN

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}$

Consider the following two languages

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}$

Prove that $ALL_{DFA} \leq_{\mathcal{T}} EQ_{DFA}$

Consider the following two languages

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

Prove that $ALL_{DFA} \leq_{\mathcal{T}} EQ_{DFA}$

Assume we have a machine M_{EQ} which decides $\mathrm{EQ}_{\mathrm{DFA}}$

Consider the following two languages

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}$

Prove that $ALL_{DFA} \leq_{\mathcal{T}} EQ_{DFA}$

- Assume we have a machine M_{EQ} which decides $\mathrm{EQ}_{\mathrm{DFA}}$
- ▶ Show how we can construct a machine M_A that decides ALL_{DFA}

Consider the following two languages

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}$

Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- lacktriangle We need to construct a machine M_A that decides $\mathrm{ALL}_{\mathrm{DFA}}$

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- We need to construct a machine M_A that decides $\mathrm{ALL}_{\mathrm{DFA}}$
- ightharpoonup Let D_1 be a DFA

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- We need to construct a machine M_A that decides $\mathrm{ALL}_{\mathrm{DFA}}$
- \blacktriangleright Let D_1 be a DFA
- ▶ Let D_2 be a DFA that recognizes Σ^*

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- We need to construct a machine M_A that decides $\mathrm{ALL}_{\mathrm{DFA}}$
- ightharpoonup Let D_1 be a DFA
- ▶ Let D_2 be a DFA that recognizes Σ^*
- $\blacktriangleright \ \ L(D_1) = \Sigma^* \Leftrightarrow L(D_1) = L(D_2)$

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- We need to construct a machine M_A that decides ALL_{DFA}
- 1. M_A takes $\langle D \rangle$ as input

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- ▶ We need to construct a machine M_A that decides ALL_{DFA}
- 1. M_A takes $\langle D \rangle$ as input
- 2. M_A creates a DFA D_2 which recognizes Σ^*

$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- ▶ We need to construct a machine M_A that decides ALL_{DFA}
- 1. M_A takes $\langle D \rangle$ as input
- 2. M_A creates a DFA D_2 which recognizes Σ^*
- 3. M_A runs M_{EQ} on $\langle D, D_2 \rangle$

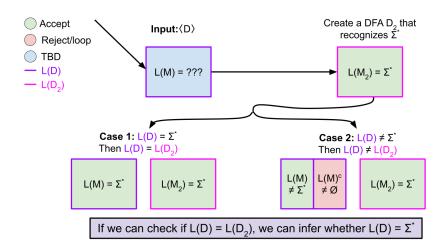
$$\mathrm{ALL}_{\mathrm{DFA}} = \{\langle D \rangle | D \text{ is a DFA}, L(D) = \Sigma^* \}$$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$

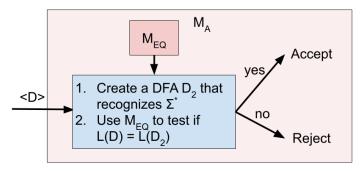
- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- ▶ We need to construct a machine M_A that decides ALL_{DFA}
- 1. M_A takes $\langle D \rangle$ as input
- 2. M_A creates a DFA D_2 which recognizes Σ^*
- 3. M_A runs M_{EQ} on $\langle D, D_2 \rangle$ 3.1 If M_{EQ} accepts $\langle D, D_2 \rangle$ then M_A accepts $\langle D \rangle$

$$\begin{split} \mathrm{ALL_{DFA}} &= \{\langle D \rangle | D \text{ is a DFA}, \textit{L}(D) = \Sigma^* \} \\ \mathrm{EQ_{DFA}} &= \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs, } \textit{L}(D_1) = \textit{L}(D_2) \} \end{split}$$

- Assume we have a machine M_{EQ} that decides $\mathrm{EQ}_{\mathrm{DFA}}$.
- We need to construct a machine M_A that decides $\mathrm{ALL}_{\mathrm{DFA}}$
- 1. M_A takes $\langle D \rangle$ as input
- 2. M_A creates a DFA D_2 which recognizes Σ^*
- 3. M_A runs M_{EQ} on $\langle D, D_2 \rangle$ 3.1 If M_{EQ} accepts $\langle D, D_2 \rangle$ then M_A accepts $\langle D \rangle$
 - 3.2 If M_{EQ} rejects $\langle D, D_2 \rangle$ then M_A rejects $\langle D \rangle$ 18 / 35



$$\begin{aligned} &\mathsf{ALL}_{\mathsf{DFA}} = \{ <\!\mathsf{D}\!\!> \mid \mathsf{D} \text{ is a DFA, L}(\mathsf{D}) = \Sigma^* \} \\ &\mathsf{EQ}_{\mathsf{DFA}} = \{ <\!\mathsf{D}_1, \, \mathsf{D}_2\!\!> \mid \mathsf{D}_1, \, \mathsf{D}_2 \text{ are DFAs, L}(\mathsf{D}_1) = \mathsf{L}(\mathsf{D}_2) \} \end{aligned}$$



If we can decide EQ_{DFA} , we can decide ALL_{DFA}

The Language A_{TM}

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

The Language A_{TM}

Consider the following language

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

ightharpoonup Let's prove that A_{TM} is RE

The Language A_{TM}

Consider the following language

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

- lacktriangle Let's prove that A_{TM} is RE
- ▶ We receive a machine *M* and an input *w*

The Language A_{TM}

Consider the following language

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

- lacktriangle Let's prove that A_{TM} is RE
- We receive a machine M and an input w
- ▶ We want to accept $\langle M, w \rangle$ if M accepts w

The Language A_{TM}

Consider the following language

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

- lacktriangle Let's prove that A_{TM} is RE
- We receive a machine M and an input w
- ▶ We want to accept $\langle M, w \rangle$ if M accepts w
- ▶ We want to loop on or (ideally) reject $\langle M, w \rangle$ if M rejects or loops on w

$A_{\rm TM}$ is RE

Let's prove that the following language is RE

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

Let's prove that the following language is RE

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

We'll design a machine M_A that recognizes A_{TM}

Let's prove that the following language is RE

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

We'll design a machine M_A that recognizes A_{TM}

1. M_A receives $\langle M, w \rangle$ as input

Let's prove that the following language is RE

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

We'll design a machine M_A that recognizes A_{TM}

- 1. M_A receives $\langle M, w \rangle$ as input
- 2. M_A simulates M on w

Let's prove that the following language is RE

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

We'll design a machine M_A that recognizes $A_{\rm TM}$

- 1. M_A receives $\langle M, w \rangle$ as input
- 2. M_A simulates M on w
 - 2.1 If M ever accepts w, M_A accepts $\langle M, w \rangle$

Let's prove that the following language is RE

$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

We'll design a machine M_A that recognizes $A_{\rm TM}$

- 1. M_A receives $\langle M, w \rangle$ as input
- 2. M_A simulates M on w
 - 2.1 If M ever accepts w, M_A accepts $\langle M, w \rangle$
 - 2.2 If M rejects or loops on w, M_A will not accept $\langle M, w \rangle$

Let's prove that if we had a machine M_H that could decide ${\rm HALT}$, we could construct a machine M_A that decides ${\rm A_{TM}}$

This is just a hypothetical

- This is just a hypothetical
- ▶ We are <u>not</u> saying M_H exists we proved that it doesn't.

- This is just a hypothetical
- ▶ We are <u>not</u> saying M_H exists we proved that it doesn't.
- We are saying we could design M_A if we could use M_H as a subroutine

Let's prove that if we had a machine M_H that could decide ${\rm HALT}$, we could construct a machine M_A that decides ${\rm A_{TM}}$

▶ In this hypothetical, M_H takes $\langle M, w \rangle$ and tells us if M halts on w

- ▶ In this hypothetical, M_H takes $\langle M, w \rangle$ and tells us if M halts on w
- \triangleright We will design a machine M_A

- In this hypothetical, M_H takes $\langle M, w \rangle$ and tells us if M halts on w
- \blacktriangleright We will design a machine M_A
 - $ightharpoonup M_A$ takes $\langle M, w \rangle$

- In this hypothetical, M_H takes $\langle M, w \rangle$ and tells us if M halts on w
- \blacktriangleright We will design a machine M_A
 - $ightharpoonup M_A$ takes $\langle M, w \rangle$
 - ▶ We want it to tell us whether M accepts w

Let's prove that if we had a machine M_H that could decide ${\rm HALT}$, we could construct a machine M_A that decides ${\rm A_{TM}}$

- ▶ In this hypothetical, M_H takes $\langle M, w \rangle$ and tells us if M halts on w
- \blacktriangleright We will design a machine M_A
 - $ightharpoonup M_A$ takes $\langle M, w \rangle$
 - ▶ We want it to tell us whether *M* accepts *w*

Let's design M_A , which will take advantage of M_H

```
\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}

\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}

Theorem: \mathrm{A_{TM}} \leq_T \mathrm{HALT}
```

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_{\mathcal{T}} \mathrm{HALT}$

To decide $A_{\rm TM}$ we do the following:

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_{\mathcal{T}} \mathrm{HALT}$

To decide $A_{\rm TM}$ we do the following:

1. Receive $\langle M, w \rangle$ as input

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_{\mathcal{T}} \mathrm{HALT}$

To decide $A_{\rm TM}$ we do the following:

- 1. Receive $\langle M, w \rangle$ as input
- 2. Check if M will halt on w. If it not, we reject

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_{\mathcal{T}} \mathrm{HALT}$

To decide A_{TM} we do the following:

- 1. Receive $\langle M, w \rangle$ as input
- 2. Check if M will halt on w. If it not, we reject
- 3. If M is guaranteed to halt, we run it on w

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_{\mathcal{T}} \mathrm{HALT}$

To decide $A_{\rm TM}$ we do the following:

- 1. Receive $\langle M, w \rangle$ as input
- 2. Check if M will halt on w. If it not, we reject
- 3. If M is guaranteed to halt, we run it on w
- 4. Accept $\langle M, w \rangle$ if and only if M accepts w

```
\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}

\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}

Theorem: \mathrm{A_{TM}} \leq_T \mathrm{HALT}
```

ightharpoonup Let M_H decide HALT

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_T \mathrm{HALT}$

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$

 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_T \mathrm{HALT}$

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input

```
\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}

\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}

Theorem: \mathrm{A_{TM}} \leq_T \mathrm{HALT}
```

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$

 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_T \mathrm{HALT}$

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - "check whether it's safe to run M on w"

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$

 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_T \mathrm{HALT}$

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - 3. If M_H rejects $\langle M, w \rangle$ then M_A rejects $\langle M, w \rangle$

```
\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}

\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}

Theorem: \mathrm{A_{TM}} \leq_T \mathrm{HALT}
```

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - 3. If M_H rejects $\langle M, w \rangle$ then M_A rejects $\langle M, w \rangle$
 - "M loops on w so it clearly doesn't accept w

```
\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}

\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}

Theorem: \mathrm{A_{TM}} \leq_T \mathrm{HALT}
```

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - 3. If M_H rejects $\langle M, w \rangle$ then M_A rejects $\langle M, w \rangle$
 - 4. Otherwise M_A runs M on w until it halts

```
\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}

\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}

Theorem: \mathrm{A_{TM}} \leq_T \mathrm{HALT}
```

- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - 3. If M_H rejects $\langle M, w \rangle$ then M_A rejects $\langle M, w \rangle$
 - 4. Otherwise M_A runs M on w until it halts
 - $ightharpoonup M_H$ told us that M was guaranteed to halt

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$

 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_T \mathrm{HALT}$

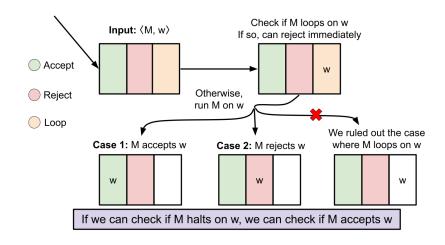
- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - 3. If M_H rejects $\langle M, w \rangle$ then M_A rejects $\langle M, w \rangle$
 - 4. Otherwise M_A runs M on w until it halts
 - 4.1 If M accepts w then M_A accepts $\langle M, w \rangle$

$$\mathrm{HALT} = \{\langle M, w \rangle | M \text{ halts on } w \}$$

 $\mathrm{A_{TM}} = \{\langle M, w \rangle | w \in L(M) \}$
Theorem: $\mathrm{A_{TM}} \leq_{\mathcal{T}} \mathrm{HALT}$

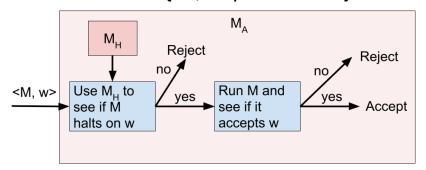
- \triangleright Let M_H decide HALT
- $ightharpoonup M_A$ will decide A_{TM} as follows:
 - 1. M_A takes $\langle M, w \rangle$ as input
 - 2. M_A runs M_H on $\langle M, w \rangle$
 - 3. If M_H rejects $\langle M, w \rangle$ then M_A rejects $\langle M, w \rangle$
 - 4. Otherwise M_A runs M on w until it halts
 - 4.1 If M accepts w then M_A accepts $\langle M, w \rangle$
 - 4.2 If M rejects w then M_A rejects $\langle M, w \rangle$

$A_{TM} \leq_{\mathcal{T}} HALT$



$A_{TM} \leq_{\mathcal{T}} HALT$

A_{TM} = {<M, w> | M accepts w} HALT = {<M, w> | M halts on w}



If we can decide HALT, we can decide \mathbf{A}_{TM}

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

Let's prove that HALT is reducible to A_{TM}

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

Let's suppose have a machine M_A which decides $A_{\rm TM}$

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

- Let's suppose have a machine M_A which decides A_{TM}
- Let's design a machine M_H that could decide HALT if it could use M_A as a subroutine

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

- Let's suppose have a machine M_A which decides A_{TM}
- Let's design a machine M_H that could decide HALT if it could use M_A as a subroutine
 - ▶ We are <u>not</u> claiming HALT is decidable in general

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
 $\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$

- Let's suppose have a machine M_A which decides A_{TM}
- Let's design a machine M_H that could decide HALT if it could use M_A as a subroutine
 - ▶ We are <u>not</u> claiming HALT is decidable in general
 - We are only showing it is decidable under this hypothetical scenario

Let's prove that HALT is reducible to A_{TM}

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

► Let M_A decide A_{TM}

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$

 $\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$

- ▶ Let M_A decide A_{TM}
- ▶ We'll design M_H , which receives $\langle M, w \rangle$ and wants to decide if M halts on w

$$\mathrm{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\mathrm{A_{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

- ▶ Let M_A decide A_{TM}
- ▶ We'll design M_H , which receives $\langle M, w \rangle$ and wants to decide if M halts on w
- We will create a new machine P at runtime

$$\text{HALT} = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$\text{A}_{\text{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$$

- ▶ Let M_A decide A_{TM}
- ▶ We'll design M_H , which receives $\langle M, w \rangle$ and wants to decide if M halts on w
- ▶ We will create a new machine P at runtime
- P will accept w if and only if M halts on w

$HALT \leq_T A_{TM}$

$$HALT = \{ \langle M, w \rangle | M \text{ halts on } w \}$$
$$A_{TM} = \{ \langle M, w \rangle | w \in L(M) \}$$

- ▶ Let M_A decide A_{TM}
- ▶ We'll design M_H , which receives $\langle M, w \rangle$ and wants to decide if M halts on w
- ▶ We will create a new machine P at runtime
- ▶ P will accept w if and only if M halts on w
- ▶ If we can determine whether *P* accepts *w*, we can determine whether *M* halts on *w*

Let's prove that HALT is reducible to A_{TM}

Let's prove that HALT is reducible to A_{TM}

Suppose M_A decides A_{TM} . We'll design a machine M_H that decides HALT

1. M_H receives $\langle M, w \rangle$ as input

Let's prove that HALT is reducible to $A_{\rm TM}$

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:

Let's prove that HALT is reducible to $A_{\rm TM}$

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine *P*:
 - 2.1 P takes input s

Let's prove that HALT is reducible to A_{TM}

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:
 - 2.1 P takes input s
 - 2.2 *P* simulates *M* on *s* Here, *M* is hard-coded

Let's prove that HALT is reducible to A_{TM}

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:
 - 2.1 P takes input s
 - 2.2 *P* simulates *M* on *s* Here, *M* is hard-coded
 - 2.3 If M ever halts, P accepts s (even if M rejected) If M loops forever then so will P

Let's prove that HALT is reducible to A_{TM}

Suppose M_A decides A_{TM} . We'll design a machine M_H that decides HALT

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:
 - 2.1 *P* takes input *s*
 - 2.2 *P* simulates *M* on *s* Here, *M* is hard-coded
 - 2.3 If M ever halts, P accepts s (even if M rejected) If M loops forever then so will P

When does P accept a string w?

Let's prove that HALT is reducible to A_{TM}

Suppose M_A decides A_{TM} . We'll design a machine M_H that decides HALT

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:
 - 2.1 P takes input s
 - 2.2 *P* simulates *M* on *s* Here, *M* is hard-coded
 - 2.3 If M ever halts, P accepts s (even if M rejected) If M loops forever then so will P

When does P accept a string w?

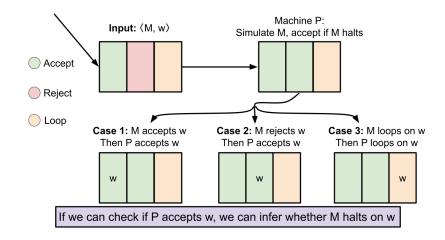
P accepts $w \Leftrightarrow M$ halts on w

Let's prove that HALT is reducible to A_{TM}

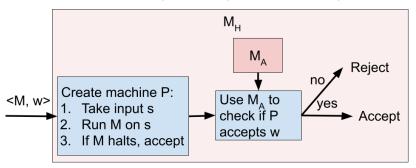
- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:
 - 2.1 P takes input s
 - 2.2 *P* simulates *M* on *s* Here, *M* is hard-coded
 - 2.3 If M ever halts, P accepts s (even if M rejected) If M loops forever then so will P
- 3. Run M_A on input $\langle P, w \rangle$

Let's prove that HALT is reducible to A_{TM}

- 1. M_H receives $\langle M, w \rangle$ as input
- 2. Construct a machine P:
 - 2.1 P takes input s
 - 2.2 *P* simulates *M* on *s*
 - Here, M is hard-coded
 - 2.3 If M ever halts, P accepts s (even if M rejected) If M loops forever then so will P
- 3. Run M_A on input $\langle P, w \rangle$
 - 3.1 If M_A accepts $\langle P, w \rangle$, M_H accepts $\langle M, w \rangle$ If M_A rejects $\langle P, w \rangle$, M_H rejects $\langle M, w \rangle$



 $A_{TM} = \{ < M, w > | M \text{ accepts } w \}$ HALT = $\{ < M, w > | M \text{ halts on } w \}$



If we can decide A_{TM} , we can decide HALT

Corollary: A_{TM} is undecidable

Corollary: A_{TM} is undecidable

Corollary: A_{TM} is undecidable

Why?

► AFSOC A_{TM} is decidable

Corollary: A_{TM} is undecidable

- ► AFSOC A_{TM} is decidable
- ► Then HALT is decidable

Corollary: A_{TM} is undecidable

- ► AFSOC A_{TM} is decidable
- ► Then HALT is decidable
 - But we know HALT is undecidable this is a contradiction!

Corollary: A_{TM} is undecidable

- ► AFSOC A_{TM} is decidable
- ► Then HALT is decidable
 - But we know HALT is undecidable this is a contradiction!
- We conclude that A_{TM} couldn't have been decidable

We want to show that language B is undecidable

We want to show that language B is undecidable

Technique: Reduce from a known undecidable language A

We want to show that language B is undecidable

Technique: Reduce from a known undecidable language \overline{A}

1. AFSOC *B* is decidable

We want to show that language B is undecidable

 $\frac{\textbf{Technique:}}{\text{language } A} \text{ Reduce from a known undecidable}$

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"

We want to show that language B is undecidable

 $\frac{\textbf{Technique:}}{\text{language } A} \text{ Reduce from a known undecidable}$

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"
- 3. But A is known to be undecidable

We want to show that language B is undecidable

 $\frac{\textbf{Technique:}}{\text{language } A} \text{ Reduce from a known undecidable}$

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"
- 3. But A is known to be undecidable
 - This is a contradiction!

We want to show that language B is undecidable

Technique: Reduce from a known undecidable language \overline{A}

- 1. AFSOC B is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"
- 3. But A is known to be undecidable
 - This is a contradiction!
- 4. We conclude that *B* was never decidable in the first place