Theory of Computation
Turing Reducibility

Arjun Chandrasekhar

1/35

Programs can Create other Programs

2/35

Programs can Create other Programs

» Can we write a java program that creates
another java program?

2 /35

Programs can Create other Programs

» Can we write a java program that creates
another java program?

» Can we decide what the new program should
do based on what command line argument the
original program received?

2 /35

Programs can Create other Programs

» Can we write a java program that creates
another java program?

» Can we decide what the new program should
do based on what command line argument the
original program received?

» After creating a new program, can we analyze
that program?

2 /35

Programs can create other programs

» Consider the program makeProgram.java

3/35

Programs can create other programs

» Consider the program makeProgram.java
1. makeProgram.java takes a string w as input

3/35

Programs can create other programs

» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. makeProgram_java creates a java source code file
called oneString.java

3/35

Programs can create other programs

» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. makeProgram_java creates a java source code file
called oneString.java

2.1 oneString.java takes an input string s

3/35

Programs can create other programs

» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. makeProgram_java creates a java source code file
called oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s=w
print REJECT if s # w
Note that w is a hard-coded constant

3/35

Programs can analyze new programs

4/35

Programs can analyze new programs

» Let's say we have a program called even.java

4/35

Programs can analyze new programs
» Let's say we have a program called even.java

» even.java checks if another source code file has an
even number of characters

4/35

Programs can analyze new programs

» Let's say we have a program called even.java

» even.java checks if another source code file has an
even number of characters

» Consider the program makeProgram.java

4/35

Programs can analyze new programs

» Let's say we have a program called even.java

» even.java checks if another source code file has an
even number of characters

» Consider the program makeProgram.java
1. makeProgram.java takes a string w as input

4/35

Programs can analyze new programs

» Let's say we have a program called even.java
» even.java checks if another source code file has an
even number of characters
» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called
oneString.java

4/35

Programs can analyze new programs

» Let's say we have a program called even.java
» even.java checks if another source code file has an
even number of characters
» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called
oneString.java

2.1 oneString.java takes an input string s

4/35

Programs can analyze new programs

» Let's say we have a program called even.java

» even.java checks if another source code file has an
even number of characters

» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called
oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s=w
print REJECT if s # w
Note that w is a hard-coded constant

4/35

Programs can analyze new programs

» Let's say we have a program called even.java

» even.java checks if another source code file has an
even number of characters

» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called
oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s=w
print REJECT if s # w
Note that w is a hard-coded constant

3. run even.java on oneString.java

4/35

Programs can analyze new programs

» Let's say we have a program called even.java
» even.java checks if another source code file has an
even number of characters
» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called
oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s=w

print REJECT if s # w

Note that w is a hard-coded constant

3. run even.java on oneString.java

I've put the code on the course website (in python)

4/35

Reducibility

5/35

Reducibility

» “If | can solve problem B, then | can solve
problem A."

5 /35

Reducibility

» “If | can solve problem B, then | can solve
problem A."

» “So solving problem B is at least as hard as
solving problem A"

5 /35

Reducibility

» If | can obtain a job, | can earn some money

6 /35

Reducibility

» If | can obtain a job, | can earn some money

» The problem of earning money can be reduced to
the problem of obtaining a job

6/35

Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

6 /35

Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

» The problem of obtaining a job can be reduced to
the problem of getting to Los Angeles

6 /35

Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

» If | can find a map to Los Angeles, | can get to
Los Angeles

6 /35

Reducibility

» If | can obtain a job, | can earn some money

» If | can get to Los Angeles, | can obtain a job

» If | can find a map to Los Angeles, | can get to
Los Angeles
» The problem of getting to Los Angeles can be
reduced to the problem of finding a map to Los
Angeles

6/35

Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

» If | can find a map to Los Angeles, | can get to
Los Angeles

» The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 /35

Reducibility

» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles

7/35

Reducibility

» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles

» Suppose | find a map to Los Angeles

7/35

Reducibility
» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles
» Suppose | find a map to Los Angeles

oCamarilio aul’g Rancho Twentynine
Drm s s Cucamonga Yucca valey Pelms
Santa i Rialto—oRedland:
et hit Ontario
Camplolg Paln
Sprng
Long Beach “{Anaheim o Jo
o - d Nai
Paim De
ella,
La Guinta
vEscondido A
Anza-Borrego
hop tate Par)
ach < Poway b "+
s Santes
S
o1 Cajon
San Diego o

5Chula Vista B e ST
——rTecalE
Tijuanao
Villafaniana

7/35

Reducibility

» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles

» Suppose | find a map to Los Angeles

oCamarilio ELII'E Rancho Twentynine
Drm s s Cucamonga Yucca valey Pelms
Santa i Rialto—oRedland:
Monica) O
Camplolg Paln
Sprng
Long Beach “{Anaheim o Jo
o - d Nai
Paim De
ella,
La Guinta
vEscondido A
Anza-Borrego
hop tate Par)
ach < Poway b "+
a.J Santee
4
o1 Cajon
San Diego' o

oChula Vista B, & S
—rTeCalE
Tijuanao—3
Villafaniana

Can | start earning money?

7/35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

8 /35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead
» The problem of getting to Hogsmead can be
reduced to the problem of obtaining the
Marauder’s Map

8 /35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» The problem of getting to Hogsmead can be
reduced to the problem of obtaining the
Marauder’s Map

MEONY WORMTAIL.?
" .PADFOOT 3. PRONGS

"'Wﬁ! =

8 /35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» The problem of getting to Hogsmead can be
reduced to the problem of obtaining the
Marauder’s Map

When we make this statement, we are not claiming
that it is possible to actually obtain the Marauder’s
map. We are just considering the hypothetical
scenario in which we could obtain it.

9/35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» Now let's say | convince you that getting to
Hogsmead is impossible (because it's a fictional
place)

10 /35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» Now let's say | convince you that getting to
Hogsmead is impossible (because it's a fictional

place)

» Then you would conclude that obtaining
the Marauder’s Map is also impossible

10 /35

Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» Now let's say | convince you that getting to
Hogsmead is impossible (because it's a fictional

place)

» Then you would conclude that obtaining
the Marauder’s Map is also impossible

» Otherwise we would be able to do something we
know is impossible

10 /35

Turing Reducibilty

11/35

Turing Reducibilty

» Let A and B be formal languages

11/35

Turing Reducibilty

» Let A and B be formal languages

» Suppose that we prove that if there were a
machine Mg to decide B, then we could
construct a machine M4 to decide A

11/35

Turing Reducibilty

» Let A and B be formal languages

» Suppose that we prove that if there were a
machine Mg to decide B, then we could
construct a machine M4 to decide A

» Then we say A is Turing reducible (or simply
reducible) to B

11/35

Turing Reducibilty

» Let A and B be formal languages

» Suppose that we prove that if there were a
machine Mg to decide B, then we could
construct a machine M4 to decide A

» Then we say A is Turing reducible (or simply

reducible) to B
» We use the notation A <+ B

11/35

Turing Reducibility

W Process w, using M, as
a helper function

» Accept/Reject

If we can decide B, we can decide A

12/35

EVEN <+ ODD

Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

13 /35

EVEN <+ ODD

Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

» Note that n is even < n is not odd

13 /35

EVEN <+ ODD
Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

1. Mgygn takes an integer n € N as input

14 /35

EVEN <+ ODD
Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

1. Mgygn takes an integer n € N as input

2. MEVEN runs MODD onn

14 /35

EVEN <+ ODD
Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

1. Mgygn takes an integer n € N as input
2. MEVEN runs MODD onn
2.1 If Mopp accepts n, then Mgygn rejects n

14 /35

EVEN <+ ODD
Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

1. Mgygn takes an integer n € N as input

2. MEVEN runs MODD onn

2.1 If Mopp accepts n, then Mgygn rejects n
2.2 If Mopp rejects n then MgygN accepts n

14 /35

EVEN <+ ODD

EVEN <. ODD

IVIODD

:

M

EVEN

n
: Use M,

odd

totestifnis |

Reject
es
no
Accept

If we can decide ODD, we can decide EVEN

15 /35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {(Dl, D2>|D1, D2 are DFAS, L(Dl) = L(Dg)}

16 / 35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {(Dl, D2>|D1, D2 are DFAS, L(Dl) = L(Dg)}

Prove that ALLDFA <7 EQDFA

16 / 35

ALLpra <7 EQpDFA

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {(Dl, D2>|D1, D2 are DFAS, L(Dl) = L(Dg)}

Prove that ALLDFA <7 EQDFA

» Assume we have a machine Mgg which decides
EQpra

16 / 35

ALLpra <7 EQpDFA

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {(Dl, D2>|D1, D2 are DFAS, L(Dl) = L(Dg)}

Prove that ALLDFA <7 EQDFA

» Assume we have a machine Mgg which decides
EQpra

» Show how we can construct a machine M4 that
decides ALLppa

16 / 35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {<D1, Dz>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgg that decides
EQpra.

17 /35

ALLpra <7 EQpra
Consider the following two languages
ALLppa = {(D)|D is a DFA,L(D) = ¥*}
EQDFA = {<D1, Dz>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgg that decides

EQpra.
» We need to construct a machine M4 that

decides ALLppa

17 /35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {<D1, Dz>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgg that decides

EQpra.
» We need to construct a machine M4 that

decides ALLppa
» Let D; be a DFA

17 /35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {<D1, Dz>|D1, Dz are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgg that decides
EQpra.

» We need to construct a machine M4 that
decides ALLppa

» Let D; be a DFA
» Let D, be a DFA that recognizes L*

17 /35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {<D1, Dz>|D1, Dz are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgg that decides

EQpra.
» We need to construct a machine M4 that

decides ALLppa
» Let D; be a DFA
» Let D, be a DFA that recognizes L*

17 /35

ALLpra <7 EQpra

Consider the following two languages
ALLppa = {(D)|D is a DFA,L(D) = ¥*}
EQDFA = {<D1, D2>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgq that decides

EQpra.
» We need to construct a machine My, that

decides ALLppa
1. M, takes (D) as input

18 /35

ALLpra <7 EQpra

Consider the following two languages

ALLppa = {(D)|D is a DFA, L(D) = £*}
EQDFA = {<D1, D2>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgq that decides
EQpra-

» We need to construct a machine My, that
decides ALLppa

1. M, takes (D) as input
2. My creates a DFA D, which recognizes L*

18 /35

ALLpra <7 EQpra

Consider the following two languages
ALLppa = {(D)|D is a DFA,L(D) = ¥*}
EQDFA = {<D1, D2>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgq that decides

EQpra.

» We need to construct a machine My, that
decides ALLppa

1. M, takes (D) as input

M, creates a DFA D, which recognizes *
My runs Mgg on (D, D5)

adih

18 /35

ALLpra <7 EQpra

Consider the following two languages
ALLppa = {(D)|D is a DFA,L(D) = ¥*}
EQDFA = {<D1, D2>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgq that decides

EQpra.

» We need to construct a machine My, that
decides ALLppa

1. M, takes (D) as input

M, creates a DFA D, which recognizes *
Ma runs Mgg on (D, D5)
3.1 If Mgg accepts (D, D,) then M, accepts (D)

18 /35

adih

ALLpra <7 EQpra

Consider the following two languages
ALLppa = {(D)|D is a DFA,L(D) = ¥*}
EQDFA = {<D1, D2>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgq that decides
EQpra.

» We need to construct a machine My, that
decides ALLppa

1. M, takes (D) as input

M, creates a DFA D, which recognizes *

My runs Mgg on (D, D5)

3.1 If Mgg accepts (D, D,) then M, accepts (D)

3.2 If Mgqg rejects (D, D,) then M, rejects (D) 18 / 35

adih

ALLpra <7 EQpDFA

(O Accept Input:(D) Create a DFA D, that
O Reject/loop) recognizes Z
(O TBD
— L(D) L(M) = 222 > L(M,)=%
— L(D,)
Pf B
Case 1: L(D) = Case2:L(D)#%
Then L(D) = L(D) Then L(D) # L(D,)
LM) =5 LM, =5 pocdl L(M,) =

If we can check if L(D) = L(D,), we can infer whether L(D) = P |

19 /35

ALLpra <7 EQpFA

ALL__, ={<D> | D is a DFA, L(D) = I’}
EQ,,, = {<D,, D,> | D,, D, are DFAs, L(D,) = L(D,}

M,
M
EQ
Accept
* yes
1. Create a DFA D, that
<D> . . 2
__» recognizes N
2. Use MEQ to test if @
L(D) = L(D2) Reject

If we can decide EQDFA, we can decide ALL .

20 /35

The Language Ay

Consider the following language

21 /35

The Language Ay

Consider the following language

» Let's prove that A1y is RE

21 /35

The Language Ay

Consider the following language

Arv = {(M, w)|w € L(M)}

» Let's prove that A1y is RE
» We receive a machine M and an input w

21 /35

The Language Ay

Consider the following language

Arv = {(M, w)|w € L(M)}

» Let's prove that A1y is RE
» We receive a machine M and an input w
» We want to accept (M, w) if M accepts w

21 /35

The Language Ay

Consider the following language

» Let's prove that A1y is RE
» We receive a machine M and an input w
» We want to accept (M, w) if M accepts w

» We want to loop on or (ideally) reject (M, w)
if M rejects or loops on w

21 /35

ATM is RE

Let's prove that the following language is RE

Anyt = {(M, w)lw € L(M)}

22 /35

ATM is RE

Let's prove that the following language is RE
Arm = {(M, w)|w € L(M)}

We'll design a machine My, that recognizes Ay

22 /35

ATM is RE

Let's prove that the following language is RE
Arm = {(M, w)|w € L(M)}

We'll design a machine My, that recognizes Ay
1. Mj receives (M, w) as input

22 /35

ATM is RE

Let's prove that the following language is RE
Arm = {(M, w)|w € L(M)}

We'll design a machine My, that recognizes Ay
1. My receives (M, w) as input
2. My simulates M on w

22 /35

ATM is RE

Let's prove that the following language is RE
Arm = {(M, w)|w € L(M)}

We'll design a machine My, that recognizes Ay
1. My receives (M, w) as input
2. My simulates M on w
2.1 If M ever accepts w, My accepts (M, w)

22 /35

ATM is RE

Let's prove that the following language is RE
Arm = {(M, w)|w € L(M)}

We'll design a machine My, that recognizes Ay
1. My receives (M, w) as input
2. My simulates M on w

2.1 If M ever accepts w, My accepts (M, w)
2.2 If M rejects or loops on w, M, will not accept
(M, w)

22 /35

Ary <7 HALT

23 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

23 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

» This is just a hypothetical

23 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

» This is just a hypothetical

» We are not saying My exists - we proved that
it doesn't.

23 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay
» This is just a hypothetical
» We are not saying My exists - we proved that
it doesn't.

» We are saying we could design My
if we could use My as a subroutine

23 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

» In this hypothetical, My takes (M, w) and tells
us if M halts on w

24 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay
» In this hypothetical, My takes (M, w) and tells
us if M halts on w
» We will design a machine My

24 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

» In this hypothetical, My takes (M, w) and tells
us if M halts on w
» We will design a machine My
> M, takes (M, w)

24 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay
» In this hypothetical, My takes (M, w) and tells
us if M halts on w
» We will design a machine My

> M, takes (M, w)
» We want it to tell us whether M accepts w

24 /35

Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

» In this hypothetical, My takes (M, w) and tells
us if M halts on w
» We will design a machine My
> M, takes (M, w)
» We want it to tell us whether M accepts w

Let's design My, which will take advantage of My

24 /35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: Ay <+ HALT

25 /35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: Ay <+ HALT

To decide A1y we do the following:

25 /35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: Ay <+ HALT

To decide A1y we do the following:
1. Receive (M, w) as input

25 /35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: Ay <+ HALT

To decide A1y we do the following:
1. Receive (M, w) as input
2. Check if M will halt on w. If it not, we reject

25 /35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: Ay <+ HALT

To decide A1y we do the following:
1. Receive (M, w) as input
2. Check if M will halt on w. If it not, we reject
3. If M is guaranteed to halt, we run it on w

25 /35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: Ay <+ HALT

To decide A1y we do the following:
1. Receive (M, w) as input
2. Check if M will halt on w. If it not, we reject
3. If M is guaranteed to halt, we run it on w
4. Accept (M, w) if and only if M accepts w

25 /35

Ay <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT

26 / 35

Ay <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT
» M, will decide Ay as follows:

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT

» M, will decide Ay as follows:
1. M, takes (M, w) as input

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT

» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. My runs My on (M, w)

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
A = {{M, w)|w € L(M)}
Theorem: Ay <+ HALT

» Let My decide HALT

» My, will decide Aty as follows:

1. My takes (M, w) as input
2. My runs My on (M, w)

» ‘“check whether it's safe to run M on w”

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT

» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. Myu runs My on (M, w)

3. If My rejects (M, w) then M, rejects (M, w)

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
A = {{M, w)|w € L(M)}
Theorem: Ay <+ HALT

» Let My decide HALT
» M, will decide Ay as follows:
1. My takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)

> “M loops on w so it clearly doesn't accept w

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT

» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. Myu runs My on (M, w)

3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise M4 runs M on w until it halts

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: ATM <7 HALT

» Let My decide HALT
» My, will decide Ay as follows:
1. My takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise My runs M on w until it halts
» My told us that M was guaranteed to halt

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT
» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise M4 runs M on w until it halts
4.1 If M accepts w then M4 accepts (M, w)

26 / 35

Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT
» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise M4 runs M on w until it halts

4.1 If M accepts w then M4 accepts (M, w)
4.2 If M rejects w then M4 rejects (M, w)

26 / 35

Ary <7 HALT

Check if M loops on w

Input: (M, w) If so, can reject immediately

(O Accept > w

O Reject Otherwise,
run M on w

(O Loop
We ruled out the case
Case 1: M accepts w Case 2: M rejects w where M loops on w
w w w

If we can check if M halts on w, we can check if M accepts w |

27 /35

Ay <7 HALT

<M, w>

AL, ={<M, w> | M accepts w}
HALT = {<M, w> | M halts on w}

My

y

Use MH to

——>seeif M

halts on w

Reject

no

yes

M

A

Run M and
see if it
accepts w

Reject

Accept

If we can decide HALT, we can decide ATIVI

28 /35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}

29 /35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}

» Let's suppose have a machine M, which
decides Aty

29 /35

HALT <+ Ay
Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}

» Let's suppose have a machine M, which

decides Aty
» Let's design a machine My that could decide
HALT if it could use M4 as a subroutine

29 /35

HALT <+ Ay
Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}

» Let's suppose have a machine M, which
decides Aty
» Let's design a machine My that could decide

HALT if it could use M4 as a subroutine
» We are not claiming HALT is decidable in general

29 /35

HALT <+ Ay
Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}

» Let's suppose have a machine M, which

decides Aty
» Let's design a machine My that could decide
HALT if it could use M4 as a subroutine
» We are not claiming HALT is decidable in general
» We are only showing it is decidable under this
hypothetical scenario

29 /35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M, decide Ay

30/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M4 decide Ay
» We'll design My, which receives (M, w) and
wants to decide if M halts on w

30/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M, decide Ay

» We'll design My, which receives (M, w) and
wants to decide if M halts on w

» We will create a new machine P at runtime

30/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M, decide Ay

» We'll design My, which receives (M, w) and
wants to decide if M halts on w

» We will create a new machine P at runtime

» P will accept w if and only if M halts on w

30/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

vwvyy

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

Let M,y decide Aty
We'll design My, which receives (M, w) and
wants to decide if M halts on w
We will create a new machine P at runtime
P will accept w if and only if M halts on w
If we can determine whether P accepts w, we
can determine whether M halts on w
30/35

HALT <7 Ay
Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT

31/35

HALT <+ Ay
Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input

31/35

HALT <+ Ay
Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input
2. Construct a machine P:

31/35

HALT <+ Ay
Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT
1. My receives (M, w) as input
2. Construct a machine P:
2.1 P takes input s

31/35

HALT <+ Ay
Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input

2. Construct a machine P:

2.1 P takes input s
2.2 P simulates M on s
Here, M is hard-coded

31/35

HALT <+ Ay
Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input

2. Construct a machine P:

2.1 P takes input s

2.2 P simulates M on s
Here, M is hard-coded

2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

31/35

HALT <7 Ay

Let's prove that HALT is reducible to Ay

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input

2. Construct a machine P:

2.1 P takes input s

2.2 P simulates M on s
Here, M is hard-coded

2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

When does P accept a string w?

31/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input
2. Construct a machine P:

2.1 P takes input s

2.2 P simulates M on s
Here, M is hard-coded

2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

When does P accept a string w?
P accepts w < M halts on w

31/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

Suppose M, decides Aty We'll design a machine
My that decides HALT
1. My receives (M, w) as input
2. Construct a machine P:
2.1 P takes input s
2.2 P simulates M on s
Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

3. Run M4 on input (P, w)

31/35

HALT <7 Ay

Let's prove that HALT is reducible to Aty

Suppose M, decides Aty We'll design a machine
My that decides HALT
1. My receives (M, w) as input
2. Construct a machine P:
2.1 P takes input s
2.2 P simulates M on s
Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P
3. Run M4 on input (P, w)
3.1 If Ma accepts (P, w), My accepts (M, w)
If Ma rejects (P, w), My rejects (M, w)

31/35

HALT <7 Ay

| . Machine P:
nput: (M, w) Simulate M, accept if M halts
(O Accept >
O Reject
(O Loop r : 1
Case 1: M accepts w Case 2: M rejects w Case 3: M loops on w
Then P accepts w Then P accepts w Then P loops on w
w w w

If we can check if P accepts w, we can infer whether M halts on w |

32/35

HALT <7 Ay

A, = {<M, w> | M accepts w}
HALT = {<M, w> | M halts on w}

<M, w>

Create machine P:
1. Take input s

Ma

|

-

2. RunMons
3. If M halts, accept

Use M, to
check if P
accepts w

no
yes

Reject

Accept

If we can decide A

™’

we can decide HALT

33/35

HALT <7 Ay

Corollary: Ay is undecidable

34 /35

HALT <7 Ay

Corollary: Ay is undecidable

Why?

34 /35

HALT <7 Ay

Corollary: Ay is undecidable

Why?
» AFSOC Ay is decidable

34 /35

HALT <7 Ay

Corollary: Ay is undecidable

Why?
» AFSOC Ay is decidable
» Then HALT is decidable

34 /35

HALT <7 Ay

Corollary: Ay is undecidable

Why?
» AFSOC Ay is decidable

» Then HALT is decidable

» But we know HALT is undecidable - this is a
contradiction!

34 /35

HALT <7 Ay

Corollary: Ay is undecidable

Why?
» AFSOC Ay is decidable

» Then HALT is decidable

» But we know HALT is undecidable - this is a
contradiction!

» We conclude that A1y couldn’t have been
decidable

34 /35

Undecidability Proofs

We want to show that language B is undecidable

35 /35

Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

35 /35

Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

35 /35

Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

35 /35

Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable

35 /35

Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A
1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable
» This is a contradiction!

35 /35

Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A
1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable
» This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 /35

