
Theory of Computation
Turing Reducibility

Arjun Chandrasekhar

1 / 35



Programs can Create other Programs

I Can we write a java program that creates
another java program?

I Can we decide what the new program should
do based on what command line argument the
original program received?

I After creating a new program, can we analyze
that program?

2 / 35



Programs can Create other Programs

I Can we write a java program that creates
another java program?

I Can we decide what the new program should
do based on what command line argument the
original program received?

I After creating a new program, can we analyze
that program?

2 / 35



Programs can Create other Programs

I Can we write a java program that creates
another java program?

I Can we decide what the new program should
do based on what command line argument the
original program received?

I After creating a new program, can we analyze
that program?

2 / 35



Programs can Create other Programs

I Can we write a java program that creates
another java program?

I Can we decide what the new program should
do based on what command line argument the
original program received?

I After creating a new program, can we analyze
that program?

2 / 35



Programs can create other programs

I Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. makeProgram.java creates a java source code file

called oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3 / 35



Programs can create other programs

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input

2. makeProgram.java creates a java source code file
called oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3 / 35



Programs can create other programs

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. makeProgram.java creates a java source code file

called oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3 / 35



Programs can create other programs

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. makeProgram.java creates a java source code file

called oneString.java
2.1 oneString.java takes an input string s

2.2 print ACCEPT if s = w
print REJECT if s 6= w
Note that w is a hard-coded constant

3 / 35



Programs can create other programs

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. makeProgram.java creates a java source code file

called oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java

I even.java checks if another source code file has an
even number of characters

I Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java

I even.java checks if another source code file has an
even number of characters

I Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input

2. Creates a java source code file called
oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java
2.1 oneString.java takes an input string s

2.2 print ACCEPT if s = w
print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Programs can analyze new programs

I Let’s say we have a program called even.java
I even.java checks if another source code file has an

even number of characters

I Consider the program makeProgram.java
1. makeProgram.java takes a string w as input
2. Creates a java source code file called

oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s = w

print REJECT if s 6= w
Note that w is a hard-coded constant

3. run even.java on oneString.java

I’ve put the code on the course website (in python)

4 / 35



Reducibility

I “If I can solve problem B, then I can solve
problem A.”

I “So solving problem B is at least as hard as
solving problem A”

5 / 35



Reducibility

I “If I can solve problem B, then I can solve
problem A.”

I “So solving problem B is at least as hard as
solving problem A”

5 / 35



Reducibility

I “If I can solve problem B, then I can solve
problem A.”

I “So solving problem B is at least as hard as
solving problem A”

5 / 35



Reducibility

I If I can obtain a job, I can earn some money

I If I can get to Los Angeles, I can obtain a job

I If I can find a map to Los Angeles, I can get to
Los Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility

I If I can obtain a job, I can earn some money
I The problem of earning money can be reduced to

the problem of obtaining a job

I If I can get to Los Angeles, I can obtain a job

I If I can find a map to Los Angeles, I can get to
Los Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility

I If I can obtain a job, I can earn some money

I If I can get to Los Angeles, I can obtain a job

I If I can find a map to Los Angeles, I can get to
Los Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility

I If I can obtain a job, I can earn some money
I If I can get to Los Angeles, I can obtain a job

I The problem of obtaining a job can be reduced to
the problem of getting to Los Angeles

I If I can find a map to Los Angeles, I can get to
Los Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility

I If I can obtain a job, I can earn some money

I If I can get to Los Angeles, I can obtain a job

I If I can find a map to Los Angeles, I can get to
Los Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility

I If I can obtain a job, I can earn some money

I If I can get to Los Angeles, I can obtain a job
I If I can find a map to Los Angeles, I can get to

Los Angeles
I The problem of getting to Los Angeles can be

reduced to the problem of finding a map to Los
Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility

I If I can obtain a job, I can earn some money

I If I can get to Los Angeles, I can obtain a job

I If I can find a map to Los Angeles, I can get to
Los Angeles

I The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 / 35



Reducibility
I The problem of earning money can be reduced

to the problem of finding a map to Los Angeles

I Suppose I find a map to Los Angeles

Can I start earning money?

7 / 35



Reducibility
I The problem of earning money can be reduced

to the problem of finding a map to Los Angeles
I Suppose I find a map to Los Angeles

Can I start earning money?

7 / 35



Reducibility
I The problem of earning money can be reduced

to the problem of finding a map to Los Angeles
I Suppose I find a map to Los Angeles

Can I start earning money?

7 / 35



Reducibility
I The problem of earning money can be reduced

to the problem of finding a map to Los Angeles
I Suppose I find a map to Los Angeles

Can I start earning money?

7 / 35



Reducibility and Impossibility
I If I can obtain the Marauder’s Map, I can get

to Hogsmead

I The problem of getting to Hogsmead can be
reduced to the problem of obtaining the
Marauder’s Map

8 / 35



Reducibility and Impossibility
I If I can obtain the Marauder’s Map, I can get

to Hogsmead
I The problem of getting to Hogsmead can be

reduced to the problem of obtaining the
Marauder’s Map

8 / 35



Reducibility and Impossibility
I If I can obtain the Marauder’s Map, I can get

to Hogsmead
I The problem of getting to Hogsmead can be

reduced to the problem of obtaining the
Marauder’s Map

8 / 35



Reducibility and Impossibility

I If I can obtain the Marauder’s Map, I can get
to Hogsmead
I The problem of getting to Hogsmead can be

reduced to the problem of obtaining the
Marauder’s Map

When we make this statement, we are not claiming
that it is possible to actually obtain the Marauder’s
map. We are just considering the hypothetical
scenario in which we could obtain it.

9 / 35



Reducibility and Impossibility

I If I can obtain the Marauder’s Map, I can get
to Hogsmead

I Now let’s say I convince you that getting to
Hogsmead is impossible (because it’s a fictional
place)

I Then you would conclude that obtaining
the Marauder’s Map is also impossible

I Otherwise we would be able to do something we
know is impossible

10 / 35



Reducibility and Impossibility

I If I can obtain the Marauder’s Map, I can get
to Hogsmead

I Now let’s say I convince you that getting to
Hogsmead is impossible (because it’s a fictional
place)

I Then you would conclude that obtaining
the Marauder’s Map is also impossible

I Otherwise we would be able to do something we
know is impossible

10 / 35



Reducibility and Impossibility

I If I can obtain the Marauder’s Map, I can get
to Hogsmead

I Now let’s say I convince you that getting to
Hogsmead is impossible (because it’s a fictional
place)

I Then you would conclude that obtaining
the Marauder’s Map is also impossible
I Otherwise we would be able to do something we

know is impossible

10 / 35



Turing Reducibilty

I Let A and B be formal languages

I Suppose that we prove that if there were a
machine MB to decide B , then we could
construct a machine MA to decide A

I Then we say A is Turing reducible (or simply
reducible) to B

I We use the notation A ≤T B

11 / 35



Turing Reducibilty

I Let A and B be formal languages

I Suppose that we prove that if there were a
machine MB to decide B , then we could
construct a machine MA to decide A

I Then we say A is Turing reducible (or simply
reducible) to B

I We use the notation A ≤T B

11 / 35



Turing Reducibilty

I Let A and B be formal languages

I Suppose that we prove that if there were a
machine MB to decide B , then we could
construct a machine MA to decide A

I Then we say A is Turing reducible (or simply
reducible) to B

I We use the notation A ≤T B

11 / 35



Turing Reducibilty

I Let A and B be formal languages

I Suppose that we prove that if there were a
machine MB to decide B , then we could
construct a machine MA to decide A

I Then we say A is Turing reducible (or simply
reducible) to B

I We use the notation A ≤T B

11 / 35



Turing Reducibilty

I Let A and B be formal languages

I Suppose that we prove that if there were a
machine MB to decide B , then we could
construct a machine MA to decide A

I Then we say A is Turing reducible (or simply
reducible) to B
I We use the notation A ≤T B

11 / 35



Turing Reducibility

12 / 35



EVEN ≤T ODD

Let’s prove that EVEN ≤T ODD

EVEN = {w |w ∈ N,w is even}
ODD = {w |w ∈ N,w is odd}

Suppose we have a machine MODD that decides
ODD. We need to construct a machine MEVEN that
decides EVEN

I Note that n is even ⇔ n is not odd

13 / 35



EVEN ≤T ODD

Let’s prove that EVEN ≤T ODD

EVEN = {w |w ∈ N,w is even}
ODD = {w |w ∈ N,w is odd}

Suppose we have a machine MODD that decides
ODD. We need to construct a machine MEVEN that
decides EVEN

I Note that n is even ⇔ n is not odd

13 / 35



EVEN ≤T ODD
Let’s prove that EVEN ≤T ODD

EVEN = {w |w ∈ N,w is even}
ODD = {w |w ∈ N,w is odd}

Suppose we have a machine MODD that decides
ODD. We need to construct a machine MEVEN that
decides EVEN

1. MEVEN takes an integer n ∈ N as input

2. MEVEN runs MODD on n

2.1 If MODD accepts n, then MEVEN rejects n
2.2 If MODD rejects n then MEVEN accepts n

14 / 35



EVEN ≤T ODD
Let’s prove that EVEN ≤T ODD

EVEN = {w |w ∈ N,w is even}
ODD = {w |w ∈ N,w is odd}

Suppose we have a machine MODD that decides
ODD. We need to construct a machine MEVEN that
decides EVEN

1. MEVEN takes an integer n ∈ N as input
2. MEVEN runs MODD on n

2.1 If MODD accepts n, then MEVEN rejects n
2.2 If MODD rejects n then MEVEN accepts n

14 / 35



EVEN ≤T ODD
Let’s prove that EVEN ≤T ODD

EVEN = {w |w ∈ N,w is even}
ODD = {w |w ∈ N,w is odd}

Suppose we have a machine MODD that decides
ODD. We need to construct a machine MEVEN that
decides EVEN

1. MEVEN takes an integer n ∈ N as input
2. MEVEN runs MODD on n

2.1 If MODD accepts n, then MEVEN rejects n

2.2 If MODD rejects n then MEVEN accepts n

14 / 35



EVEN ≤T ODD
Let’s prove that EVEN ≤T ODD

EVEN = {w |w ∈ N,w is even}
ODD = {w |w ∈ N,w is odd}

Suppose we have a machine MODD that decides
ODD. We need to construct a machine MEVEN that
decides EVEN

1. MEVEN takes an integer n ∈ N as input
2. MEVEN runs MODD on n

2.1 If MODD accepts n, then MEVEN rejects n
2.2 If MODD rejects n then MEVEN accepts n

14 / 35



EVEN ≤T ODD

15 / 35



ALLDFA ≤T EQDFA

Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

Prove that ALLDFA ≤T EQDFA

I Assume we have a machine MEQ which decides
EQDFA

I Show how we can construct a machine MA that
decides ALLDFA

16 / 35



ALLDFA ≤T EQDFA

Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

Prove that ALLDFA ≤T EQDFA

I Assume we have a machine MEQ which decides
EQDFA

I Show how we can construct a machine MA that
decides ALLDFA

16 / 35



ALLDFA ≤T EQDFA

Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

Prove that ALLDFA ≤T EQDFA

I Assume we have a machine MEQ which decides
EQDFA

I Show how we can construct a machine MA that
decides ALLDFA

16 / 35



ALLDFA ≤T EQDFA

Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

Prove that ALLDFA ≤T EQDFA

I Assume we have a machine MEQ which decides
EQDFA

I Show how we can construct a machine MA that
decides ALLDFA

16 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

I Let D1 be a DFA
I Let D2 be a DFA that recognizes Σ∗

I L(D1) = Σ∗ ⇔ L(D1) = L(D2)

17 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

I Let D1 be a DFA
I Let D2 be a DFA that recognizes Σ∗

I L(D1) = Σ∗ ⇔ L(D1) = L(D2)

17 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

I Let D1 be a DFA

I Let D2 be a DFA that recognizes Σ∗

I L(D1) = Σ∗ ⇔ L(D1) = L(D2)

17 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

I Let D1 be a DFA
I Let D2 be a DFA that recognizes Σ∗

I L(D1) = Σ∗ ⇔ L(D1) = L(D2)

17 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

I Let D1 be a DFA
I Let D2 be a DFA that recognizes Σ∗

I L(D1) = Σ∗ ⇔ L(D1) = L(D2)

17 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

1. MA takes 〈D〉 as input

2. MA creates a DFA D2 which recognizes Σ∗

3. MA runs MEQ on 〈D,D2〉

3.1 If MEQ accepts 〈D,D2〉 then MA accepts 〈D〉
3.2 If MEQ rejects 〈D,D2〉 then MA rejects 〈D〉

18 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

1. MA takes 〈D〉 as input
2. MA creates a DFA D2 which recognizes Σ∗

3. MA runs MEQ on 〈D,D2〉

3.1 If MEQ accepts 〈D,D2〉 then MA accepts 〈D〉
3.2 If MEQ rejects 〈D,D2〉 then MA rejects 〈D〉

18 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

1. MA takes 〈D〉 as input
2. MA creates a DFA D2 which recognizes Σ∗

3. MA runs MEQ on 〈D,D2〉

3.1 If MEQ accepts 〈D,D2〉 then MA accepts 〈D〉
3.2 If MEQ rejects 〈D,D2〉 then MA rejects 〈D〉

18 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

1. MA takes 〈D〉 as input
2. MA creates a DFA D2 which recognizes Σ∗

3. MA runs MEQ on 〈D,D2〉
3.1 If MEQ accepts 〈D,D2〉 then MA accepts 〈D〉

3.2 If MEQ rejects 〈D,D2〉 then MA rejects 〈D〉

18 / 35



ALLDFA ≤T EQDFA
Consider the following two languages

ALLDFA = {〈D〉|D is a DFA, L(D) = Σ∗}
EQDFA = {〈D1,D2〉|D1,D2 are DFAs, L(D1) = L(D2)}

I Assume we have a machine MEQ that decides
EQDFA.

I We need to construct a machine MA that
decides ALLDFA

1. MA takes 〈D〉 as input
2. MA creates a DFA D2 which recognizes Σ∗

3. MA runs MEQ on 〈D,D2〉
3.1 If MEQ accepts 〈D,D2〉 then MA accepts 〈D〉
3.2 If MEQ rejects 〈D,D2〉 then MA rejects 〈D〉 18 / 35



ALLDFA ≤T EQDFA

19 / 35



ALLDFA ≤T EQDFA

20 / 35



The Language ATM

Consider the following language

ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s prove that ATM is RE

I We receive a machine M and an input w

I We want to accept 〈M ,w〉 if M accepts w

I We want to loop on or (ideally) reject 〈M ,w〉
if M rejects or loops on w

21 / 35



The Language ATM

Consider the following language

ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s prove that ATM is RE

I We receive a machine M and an input w

I We want to accept 〈M ,w〉 if M accepts w

I We want to loop on or (ideally) reject 〈M ,w〉
if M rejects or loops on w

21 / 35



The Language ATM

Consider the following language

ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s prove that ATM is RE

I We receive a machine M and an input w

I We want to accept 〈M ,w〉 if M accepts w

I We want to loop on or (ideally) reject 〈M ,w〉
if M rejects or loops on w

21 / 35



The Language ATM

Consider the following language

ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s prove that ATM is RE

I We receive a machine M and an input w

I We want to accept 〈M ,w〉 if M accepts w

I We want to loop on or (ideally) reject 〈M ,w〉
if M rejects or loops on w

21 / 35



The Language ATM

Consider the following language

ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s prove that ATM is RE

I We receive a machine M and an input w

I We want to accept 〈M ,w〉 if M accepts w

I We want to loop on or (ideally) reject 〈M ,w〉
if M rejects or loops on w

21 / 35



ATM is RE

Let’s prove that the following language is RE

ATM = {〈M ,w〉|w ∈ L(M)}

We’ll design a machine MA that recognizes ATM

1. MA receives 〈M ,w〉 as input
2. MA simulates M on w

2.1 If M ever accepts w , MA accepts 〈M ,w〉
2.2 If M rejects or loops on w , MA will not accept
〈M ,w〉

22 / 35



ATM is RE

Let’s prove that the following language is RE

ATM = {〈M ,w〉|w ∈ L(M)}

We’ll design a machine MA that recognizes ATM

1. MA receives 〈M ,w〉 as input
2. MA simulates M on w

2.1 If M ever accepts w , MA accepts 〈M ,w〉
2.2 If M rejects or loops on w , MA will not accept
〈M ,w〉

22 / 35



ATM is RE

Let’s prove that the following language is RE

ATM = {〈M ,w〉|w ∈ L(M)}

We’ll design a machine MA that recognizes ATM

1. MA receives 〈M ,w〉 as input

2. MA simulates M on w

2.1 If M ever accepts w , MA accepts 〈M ,w〉
2.2 If M rejects or loops on w , MA will not accept
〈M ,w〉

22 / 35



ATM is RE

Let’s prove that the following language is RE

ATM = {〈M ,w〉|w ∈ L(M)}

We’ll design a machine MA that recognizes ATM

1. MA receives 〈M ,w〉 as input
2. MA simulates M on w

2.1 If M ever accepts w , MA accepts 〈M ,w〉
2.2 If M rejects or loops on w , MA will not accept
〈M ,w〉

22 / 35



ATM is RE

Let’s prove that the following language is RE

ATM = {〈M ,w〉|w ∈ L(M)}

We’ll design a machine MA that recognizes ATM

1. MA receives 〈M ,w〉 as input
2. MA simulates M on w

2.1 If M ever accepts w , MA accepts 〈M ,w〉

2.2 If M rejects or loops on w , MA will not accept
〈M ,w〉

22 / 35



ATM is RE

Let’s prove that the following language is RE

ATM = {〈M ,w〉|w ∈ L(M)}

We’ll design a machine MA that recognizes ATM

1. MA receives 〈M ,w〉 as input
2. MA simulates M on w

2.1 If M ever accepts w , MA accepts 〈M ,w〉
2.2 If M rejects or loops on w , MA will not accept
〈M ,w〉

22 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I This is just a hypothetical

I We are not saying MH exists - we proved that
it doesn’t.

I We are saying we could design MA

if we could use MH as a subroutine

23 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I This is just a hypothetical

I We are not saying MH exists - we proved that
it doesn’t.

I We are saying we could design MA

if we could use MH as a subroutine

23 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I This is just a hypothetical

I We are not saying MH exists - we proved that
it doesn’t.

I We are saying we could design MA

if we could use MH as a subroutine

23 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I This is just a hypothetical

I We are not saying MH exists - we proved that
it doesn’t.

I We are saying we could design MA

if we could use MH as a subroutine

23 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I This is just a hypothetical

I We are not saying MH exists - we proved that
it doesn’t.

I We are saying we could design MA

if we could use MH as a subroutine

23 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I In this hypothetical, MH takes 〈M ,w〉 and tells
us if M halts on w

I We will design a machine MA

I MA takes 〈M ,w〉
I We want it to tell us whether M accepts w

Let’s design MA, which will take advantage of MH

24 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I In this hypothetical, MH takes 〈M ,w〉 and tells
us if M halts on w

I We will design a machine MA

I MA takes 〈M ,w〉
I We want it to tell us whether M accepts w

Let’s design MA, which will take advantage of MH

24 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I In this hypothetical, MH takes 〈M ,w〉 and tells
us if M halts on w

I We will design a machine MA
I MA takes 〈M ,w〉

I We want it to tell us whether M accepts w

Let’s design MA, which will take advantage of MH

24 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I In this hypothetical, MH takes 〈M ,w〉 and tells
us if M halts on w

I We will design a machine MA
I MA takes 〈M ,w〉
I We want it to tell us whether M accepts w

Let’s design MA, which will take advantage of MH

24 / 35



ATM ≤T HALT

Let’s prove that if we had a machine MH that could
decide HALT, we could construct a machine MA

that decides ATM

I In this hypothetical, MH takes 〈M ,w〉 and tells
us if M halts on w

I We will design a machine MA
I MA takes 〈M ,w〉
I We want it to tell us whether M accepts w

Let’s design MA, which will take advantage of MH

24 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

To decide ATM we do the following:

1. Receive 〈M ,w〉 as input

2. Check if M will halt on w . If it not, we reject

3. If M is guaranteed to halt, we run it on w

4. Accept 〈M ,w〉 if and only if M accepts w

25 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

To decide ATM we do the following:

1. Receive 〈M ,w〉 as input

2. Check if M will halt on w . If it not, we reject

3. If M is guaranteed to halt, we run it on w

4. Accept 〈M ,w〉 if and only if M accepts w

25 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

To decide ATM we do the following:

1. Receive 〈M ,w〉 as input

2. Check if M will halt on w . If it not, we reject

3. If M is guaranteed to halt, we run it on w

4. Accept 〈M ,w〉 if and only if M accepts w

25 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

To decide ATM we do the following:

1. Receive 〈M ,w〉 as input

2. Check if M will halt on w . If it not, we reject

3. If M is guaranteed to halt, we run it on w

4. Accept 〈M ,w〉 if and only if M accepts w

25 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

To decide ATM we do the following:

1. Receive 〈M ,w〉 as input

2. Check if M will halt on w . If it not, we reject

3. If M is guaranteed to halt, we run it on w

4. Accept 〈M ,w〉 if and only if M accepts w

25 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

To decide ATM we do the following:

1. Receive 〈M ,w〉 as input

2. Check if M will halt on w . If it not, we reject

3. If M is guaranteed to halt, we run it on w

4. Accept 〈M ,w〉 if and only if M accepts w

25 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT

I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input

2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉

3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉

I “check whether it’s safe to run M on w”

3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉

4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉

I “M loops on w so it clearly doesn’t accept w

4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

I MH told us that M was guaranteed to halt

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉

4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}
Theorem: ATM ≤T HALT

I Let MH decide HALT
I MA will decide ATM as follows:

1. MA takes 〈M ,w〉 as input
2. MA runs MH on 〈M ,w〉
3. If MH rejects 〈M ,w〉 then MA rejects 〈M ,w〉
4. Otherwise MA runs M on w until it halts

4.1 If M accepts w then MA accepts 〈M,w〉
4.2 If M rejects w then MA rejects 〈M,w〉

26 / 35



ATM ≤T HALT

27 / 35



ATM ≤T HALT

28 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s suppose have a machine MA which
decides ATM

I Let’s design a machine MH that could decide
HALT if it could use MA as a subroutine

I We are not claiming HALT is decidable in general
I We are only showing it is decidable under this

hypothetical scenario

29 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s suppose have a machine MA which
decides ATM

I Let’s design a machine MH that could decide
HALT if it could use MA as a subroutine

I We are not claiming HALT is decidable in general
I We are only showing it is decidable under this

hypothetical scenario

29 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s suppose have a machine MA which
decides ATM

I Let’s design a machine MH that could decide
HALT if it could use MA as a subroutine

I We are not claiming HALT is decidable in general
I We are only showing it is decidable under this

hypothetical scenario

29 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s suppose have a machine MA which
decides ATM

I Let’s design a machine MH that could decide
HALT if it could use MA as a subroutine
I We are not claiming HALT is decidable in general

I We are only showing it is decidable under this
hypothetical scenario

29 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let’s suppose have a machine MA which
decides ATM

I Let’s design a machine MH that could decide
HALT if it could use MA as a subroutine
I We are not claiming HALT is decidable in general
I We are only showing it is decidable under this

hypothetical scenario

29 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let MA decide ATM

I We’ll design MH , which receives 〈M ,w〉 and
wants to decide if M halts on w

I We will create a new machine P at runtime
I P will accept w if and only if M halts on w
I If we can determine whether P accepts w , we

can determine whether M halts on w

30 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let MA decide ATM

I We’ll design MH , which receives 〈M ,w〉 and
wants to decide if M halts on w

I We will create a new machine P at runtime
I P will accept w if and only if M halts on w
I If we can determine whether P accepts w , we

can determine whether M halts on w

30 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let MA decide ATM

I We’ll design MH , which receives 〈M ,w〉 and
wants to decide if M halts on w

I We will create a new machine P at runtime

I P will accept w if and only if M halts on w
I If we can determine whether P accepts w , we

can determine whether M halts on w

30 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let MA decide ATM

I We’ll design MH , which receives 〈M ,w〉 and
wants to decide if M halts on w

I We will create a new machine P at runtime
I P will accept w if and only if M halts on w

I If we can determine whether P accepts w , we
can determine whether M halts on w

30 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

HALT = {〈M ,w〉|M halts on w}
ATM = {〈M ,w〉|w ∈ L(M)}

I Let MA decide ATM

I We’ll design MH , which receives 〈M ,w〉 and
wants to decide if M halts on w

I We will create a new machine P at runtime
I P will accept w if and only if M halts on w
I If we can determine whether P accepts w , we

can determine whether M halts on w
30 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

31 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input

2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

31 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

31 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s

2.2 P simulates M on s
Here, M is hard-coded

2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

31 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded

2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

31 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

31 / 35



HALT ≤T ATM

Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

When does P accept a string w?

31 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

When does P accept a string w?
P accepts w ⇔ M halts on w

31 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

3. Run MA on input 〈P ,w〉

3.1 If MA accepts 〈P ,w〉, MH accepts 〈M ,w〉
If MA rejects 〈P ,w〉, MH rejects 〈M ,w〉

31 / 35



HALT ≤T ATM
Let’s prove that HALT is reducible to ATM

Suppose MA decides ATM. We’ll design a machine
MH that decides HALT

1. MH receives 〈M ,w〉 as input
2. Construct a machine P :

2.1 P takes input s
2.2 P simulates M on s

Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)

If M loops forever then so will P

3. Run MA on input 〈P ,w〉
3.1 If MA accepts 〈P ,w〉, MH accepts 〈M ,w〉

If MA rejects 〈P ,w〉, MH rejects 〈M ,w〉

31 / 35



HALT ≤T ATM

32 / 35



HALT ≤T ATM

33 / 35



HALT ≤T ATM

Corollary: ATM is undecidable

Why?

I AFSOC ATM is decidable
I Then HALT is decidable

I But we know HALT is undecidable - this is a
contradiction!

I We conclude that ATM couldn’t have been
decidable

34 / 35



HALT ≤T ATM

Corollary: ATM is undecidable

Why?

I AFSOC ATM is decidable
I Then HALT is decidable

I But we know HALT is undecidable - this is a
contradiction!

I We conclude that ATM couldn’t have been
decidable

34 / 35



HALT ≤T ATM

Corollary: ATM is undecidable

Why?

I AFSOC ATM is decidable

I Then HALT is decidable

I But we know HALT is undecidable - this is a
contradiction!

I We conclude that ATM couldn’t have been
decidable

34 / 35



HALT ≤T ATM

Corollary: ATM is undecidable

Why?

I AFSOC ATM is decidable
I Then HALT is decidable

I But we know HALT is undecidable - this is a
contradiction!

I We conclude that ATM couldn’t have been
decidable

34 / 35



HALT ≤T ATM

Corollary: ATM is undecidable

Why?

I AFSOC ATM is decidable
I Then HALT is decidable

I But we know HALT is undecidable - this is a
contradiction!

I We conclude that ATM couldn’t have been
decidable

34 / 35



HALT ≤T ATM

Corollary: ATM is undecidable

Why?

I AFSOC ATM is decidable
I Then HALT is decidable

I But we know HALT is undecidable - this is a
contradiction!

I We conclude that ATM couldn’t have been
decidable

34 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable

I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable

I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable

I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable

I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable

I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable
I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35



Undecidability Proofs

We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A

1. AFSOC B is decidable

2. Show that A ≤T B
“If we can decide B we can also decide A”

3. But A is known to be undecidable
I This is a contradiction!

4. We conclude that B was never decidable in the
first place

35 / 35


