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Programs can create other programs

» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. makeProgram_java creates a java source code file
called oneString.java
2.1 oneString.java takes an input string s
2.2 print ACCEPT if s=w
print REJECT if s # w
Note that w is a hard-coded constant
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Programs can analyze new programs

» Let's say we have a program called even.java
» even.java checks if another source code file has an
even number of characters
» Consider the program makeProgram.java

1. makeProgram.java takes a string w as input
2. Creates a java source code file called
oneString.java

2.1 oneString.java takes an input string s
2.2 print ACCEPT if s=w

print REJECT if s # w

Note that w is a hard-coded constant

3. run even.java on oneString.java

I've put the code on the course website (in python)

4/35



Reducibility

5/35



Reducibility

» “If | can solve problem B, then | can solve
problem A."

5 /35



Reducibility

» “If | can solve problem B, then | can solve
problem A."

» “So solving problem B is at least as hard as
solving problem A"

5 /35



Reducibility

» If | can obtain a job, | can earn some money

6 /35



Reducibility

» If | can obtain a job, | can earn some money

» The problem of earning money can be reduced to
the problem of obtaining a job

6/35



Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

6 /35



Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

» The problem of obtaining a job can be reduced to
the problem of getting to Los Angeles

6 /35



Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

» If | can find a map to Los Angeles, | can get to
Los Angeles

6 /35



Reducibility

» If | can obtain a job, | can earn some money

» If | can get to Los Angeles, | can obtain a job

» If | can find a map to Los Angeles, | can get to
Los Angeles
» The problem of getting to Los Angeles can be
reduced to the problem of finding a map to Los
Angeles

6/35



Reducibility

» If | can obtain a job, | can earn some money
» If | can get to Los Angeles, | can obtain a job

» If | can find a map to Los Angeles, | can get to
Los Angeles

» The problem of earning money can be
reduced to the problem of finding a map
to Los Angeles

6 /35



Reducibility

» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles

7/35



Reducibility

» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles

» Suppose | find a map to Los Angeles

7/35



Reducibility
» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles
» Suppose | find a map to Los Angeles

oCamarilio aul’g Rancho Twentynine
Drm s s Cucamonga Yucca valey  Pelms
Santa i Rialto—oRedland:
et hit Ontario
Camplolg Paln
Sprng
Long Beach “{Anaheim o Jo
o - d Nai
Paim De
ella,
La Guinta
vEscondido A
Anza-Borrego
hop tate Par)
ach < Poway b "+
s Santes
S
o1 Cajon
San Diego o

5Chula Vista B e ST
——rTecalE
Tijuanao
Villafaniana

7/35



Reducibility

» The problem of earning money can be reduced
to the problem of finding a map to Los Angeles

» Suppose | find a map to Los Angeles

oCamarilio ELII'E Rancho Twentynine
Drm s s Cucamonga Yucca valey  Pelms
Santa i Rialto—oRedland:
Monica ) O
Camplolg Paln
Sprng
Long Beach “{Anaheim o Jo
o - d Nai
Paim De
ella,
La Guinta
vEscondido A
Anza-Borrego
hop tate Par)
ach < Poway b "+
a.J Santee
4
o1 Cajon
San Diego' o

oChula Vista B, & S
—rTeCalE
Tijuanao—3
Villafaniana
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Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» The problem of getting to Hogsmead can be
reduced to the problem of obtaining the
Marauder’s Map

When we make this statement, we are not claiming
that it is possible to actually obtain the Marauder’s
map. We are just considering the hypothetical
scenario in which we could obtain it.
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Reducibility and Impossibility

» If | can obtain the Marauder’'s Map, | can get
to Hogsmead

» Now let's say | convince you that getting to
Hogsmead is impossible (because it's a fictional

place)

» Then you would conclude that obtaining
the Marauder’s Map is also impossible

» Otherwise we would be able to do something we
know is impossible
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Turing Reducibilty

» Let A and B be formal languages

» Suppose that we prove that if there were a
machine Mg to decide B, then we could
construct a machine M4 to decide A

» Then we say A is Turing reducible (or simply

reducible) to B
» We use the notation A <+ B
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Turing Reducibility

W Process w, using M, as
a helper function

» Accept/Reject

If we can decide B, we can decide A
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Let's prove that EVEN <+ ODD

EVEN = {w|w € N, w is even}
ODD = {w|w € N, w is odd}

Suppose we have a machine Mppp that decides
ODD. We need to construct a machine MgygN that
decides EVEN

1. Mgygn takes an integer n € N as input

2. MEVEN runs MODD onn

2.1 If Mopp accepts n, then Mgygn rejects n
2.2 If Mopp rejects n then MgygN accepts n
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EVEN <+ ODD

EVEN <. ODD
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If we can decide ODD, we can decide EVEN
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Consider the following two languages
ALLppa = {(D)|D is a DFA,L(D) = ¥*}
EQDFA = {<D1, D2>|D1, D2 are DFAS, L(Dl) = L(Dz)}

» Assume we have a machine Mgq that decides
EQpra.

» We need to construct a machine My, that
decides ALLppa

1. M, takes (D) as input

M, creates a DFA D, which recognizes *

My runs Mgg on (D, D5)

3.1 If Mgg accepts (D, D,) then M, accepts (D)

3.2 If Mgqg rejects (D, D,) then M, rejects (D) 18 / 35
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ALLpra <7 EQpDFA

(O Accept Input:(D) Create a DFA D, that
O Reject/loop ) recognizes Z
(O TBD
— L(D) L(M) = 222 > L(M,)=%
— L(D,)
Pf B
Case 1: L(D) = Case2:L(D)#%
Then L(D) = L(D ) Then L(D) # L(D,)
LM) =5 LM, =5 pocdl L(M,) =

If we can check if L(D) = L(D,), we can infer whether L(D) = P |
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ALLpra <7 EQpFA

ALL__, ={<D> | D is a DFA, L(D) = I’}
EQ,,, = {<D,, D,> | D,, D, are DFAs, L(D,) = L(D,}

M,
M
EQ
Accept
* yes
1. Create a DFA D, that
<D> . . 2
__»  recognizes N
2. Use MEQ to test if @
L(D) = L(D2) Reject

If we can decide EQDFA, we can decide ALL .
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The Language Ay

Consider the following language

» Let's prove that A1y is RE
» We receive a machine M and an input w
» We want to accept (M, w) if M accepts w

» We want to loop on or (ideally) reject (M, w)
if M rejects or loops on w
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ATM is RE

Let's prove that the following language is RE
Arm = {(M, w)|w € L(M)}

We'll design a machine My, that recognizes Ay
1. My receives (M, w) as input
2. My simulates M on w

2.1 If M ever accepts w, My accepts (M, w)
2.2 If M rejects or loops on w, M, will not accept
(M, w)

22 /35
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decide HALT, we could construct a machine My,
that decides Ay
» This is just a hypothetical
» We are not saying My exists - we proved that
it doesn't.

» We are saying we could design My
if we could use My as a subroutine
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Ary <7 HALT

Let's prove that if we had a machine My that could
decide HALT, we could construct a machine My,
that decides Ay

» In this hypothetical, My takes (M, w) and tells
us if M halts on w
» We will design a machine My
> M, takes (M, w)
» We want it to tell us whether M accepts w

Let's design My, which will take advantage of My
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Theorem: Ay <+ HALT

To decide A1y we do the following:
1. Receive (M, w) as input
2. Check if M will halt on w. If it not, we reject
3. If M is guaranteed to halt, we run it on w
4. Accept (M, w) if and only if M accepts w
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Theorem: Ay <+ HALT

» Let My decide HALT

» My, will decide Aty as follows:

1. My takes (M, w) as input
2. My runs My on (M, w)

» ‘“check whether it's safe to run M on w”
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» Let My decide HALT
» M, will decide Ay as follows:
1. My takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)

> “M loops on w so it clearly doesn't accept w

26 / 35



Ary <7 HALT

HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT

» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. Myu runs My on (M, w)

3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise M4 runs M on w until it halts

26 / 35



Ary <7 HALT

HALT = {(M, w)|M halts on w}
Ay = {(M, w)|w € L(M)}
Theorem: ATM <7 HALT

» Let My decide HALT
» My, will decide Ay as follows:
1. My takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise My runs M on w until it halts
» My told us that M was guaranteed to halt
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HALT = {(M, w)|M halts on w}
Arn = {(M, w)|w € L(M)}
Theorem: Aty <7 HALT

» Let My decide HALT
» M, will decide Ay as follows:
1. M, takes (M, w) as input
2. My runs My on (M, w)
3. If My rejects (M, w) then M, rejects (M, w)
4. Otherwise M4 runs M on w until it halts

4.1 If M accepts w then M4 accepts (M, w)
4.2 If M rejects w then M4 rejects (M, w)
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Ary <7 HALT

Check if M loops on w

Input: (M, w) If so, can reject immediately

(O Accept > w

O Reject Otherwise,
run M on w

(O Loop
We ruled out the case
Case 1: M accepts w Case 2: M rejects w where M loops on w
w w w

If we can check if M halts on w, we can check if M accepts w |
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Ay <7 HALT

<M, w>

AL, ={<M, w> | M accepts w}
HALT = {<M, w> | M halts on w}

My

y

Use MH to

——>seeif M

halts on w

Reject

no

yes

M

A

Run M and
see if it
accepts w

Reject

Accept

If we can decide HALT, we can decide ATIVI
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Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}
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Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
A = {(M, w)lw € L(M)}

» Let's suppose have a machine M, which

decides Aty
» Let's design a machine My that could decide
HALT if it could use M4 as a subroutine
» We are not claiming HALT is decidable in general
» We are only showing it is decidable under this
hypothetical scenario

29 /35



HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M, decide Ay

30/35



HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M4 decide Ay
» We'll design My, which receives (M, w) and
wants to decide if M halts on w

30/35



HALT <7 Ay

Let's prove that HALT is reducible to Aty

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M, decide Ay

» We'll design My, which receives (M, w) and
wants to decide if M halts on w

» We will create a new machine P at runtime

30/35



HALT <7 Ay
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HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

» Let M, decide Ay

» We'll design My, which receives (M, w) and
wants to decide if M halts on w

» We will create a new machine P at runtime

» P will accept w if and only if M halts on w
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HALT <7 Ay

Let's prove that HALT is reducible to Aty

vwvyy

HALT = {(M, w)|M halts on w}
Ary = {(M, w)|lw € L(M)}

Let M,y decide Aty
We'll design My, which receives (M, w) and
wants to decide if M halts on w
We will create a new machine P at runtime
P will accept w if and only if M halts on w
If we can determine whether P accepts w, we
can determine whether M halts on w
30/35
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Suppose M, decides Aty We'll design a machine
My that decides HALT
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Let's prove that HALT is reducible to Aty

Suppose M, decides Aty We'll design a machine
My that decides HALT

1. My receives (M, w) as input
2. Construct a machine P:

2.1 P takes input s

2.2 P simulates M on s
Here, M is hard-coded

2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

When does P accept a string w?
P accepts w < M halts on w
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Let's prove that HALT is reducible to Aty

Suppose M, decides Aty We'll design a machine
My that decides HALT
1. My receives (M, w) as input
2. Construct a machine P:
2.1 P takes input s
2.2 P simulates M on s
Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P

3. Run M4 on input (P, w)
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HALT <7 Ay

Let's prove that HALT is reducible to Aty

Suppose M, decides Aty We'll design a machine
My that decides HALT
1. My receives (M, w) as input
2. Construct a machine P:
2.1 P takes input s
2.2 P simulates M on s
Here, M is hard-coded
2.3 If M ever halts, P accepts s (even if M rejected)
If M loops forever then so will P
3. Run M4 on input (P, w)
3.1 If Ma accepts (P, w), My accepts (M, w)
If Ma rejects (P, w), My rejects (M, w)
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HALT <7 Ay

| . Machine P:
nput: (M, w) Simulate M, accept if M halts
(O Accept >
O Reject
(O Loop r : 1
Case 1: M accepts w Case 2: M rejects w Case 3: M loops on w
Then P accepts w Then P accepts w Then P loops on w
w w w

If we can check if P accepts w, we can infer whether M halts on w |
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HALT <7 Ay

A, = {<M, w> | M accepts w}
HALT = {<M, w> | M halts on w}

<M, w>

Create machine P:
1. Take input s

Ma

|

-

2. RunMons
3. If M halts, accept

Use M, to
check if P
accepts w

no
yes

Reject

Accept

If we can decide A

™’

we can decide HALT
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Corollary: Ay is undecidable
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HALT <7 Ay

Corollary: Ay is undecidable

Why?
» AFSOC Ay is decidable

» Then HALT is decidable

» But we know HALT is undecidable - this is a
contradiction!

» We conclude that A1y couldn’t have been
decidable
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We want to show that language B is undecidable

Technique: Reduce from a known undecidable
language A
1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable
» This is a contradiction!

4. We conclude that B was never decidable in the
first place
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