Theory of Computation Undecidable Languages

Arjun Chandrasekhar

Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a language is decidable

- 1. AFSOC B is decidable
- 2. Show that $A \leq_T B$

"If we can decide B we can also decide A"

3. But A is known to be undecidable

This is a contradiction!

4. We conclude that *B* was never decidable in the first place

The language E_{TM}

Consider the following language

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

- We receive a TM description $\langle M \rangle$ as input
- We want to determine whether M is capable of accepting any strings or not
- We accept (M) if M rejects or loops on every string; otherwise we reject (M)

Let's prove that E_{TM} is undecidable

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

- \blacktriangleright Hint 1: Reduce from $A_{\rm TM}$
- Hint 2: Your solution will involve constructing a machine P at runtime

E_{TM} is undecidable (approach 1)

Let's prove that E_{TM} is undecidable

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 *P* receives *s* as input 2.2 If s = w, run *M* on *s* If $s \neq w$, reject *M* and *w* are hard-coded constants

E_{TM} is undecidable (approach 1)

Let's prove that E_{TM} is undecidable

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

2.2 If
$$s = w$$
, run M on s

If
$$s \neq w$$
, reject

M and w are hard-coded constants

5

What is L(P)? If M accepts w then $L(P) = \{w\}$ If M doesn't accept w then $L(P) = \emptyset$ $\langle P \rangle \in E_{TM} \Leftrightarrow \langle M, w \rangle \notin A_{TM}$ E_{TM} is undecidable (approach 1) Let's prove that E_{TM} is undecidable

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

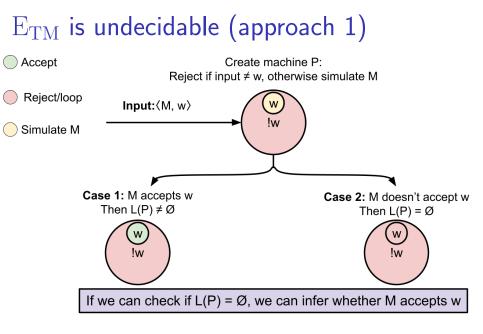
- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

2.2 If
$$s = w$$
, run M on s

If $s \neq w$, reject

M and w are hard-coded constants

3. Use M_E to check if $\langle P \rangle \in E_{TM}$ 3.1 If M_E accepts $\langle P \rangle$, D rejects $\langle M, w \rangle$ 3.2 If M_E rejects $\langle P \rangle$, D accepts $\langle M, w \rangle$



 E_{TM} is undecidable (approach 1) A_{TM} = {<M, w> | M accepts w} E_{TM} = {<M> | L(M) = ∅} D M Accept no Create machine P: 1. Take input s Use M_c to <M, w> ves check if 2. If $s \neq w$, reject Reject 3. If s = w, run M L(P) = Ø on w

If we can decide $\mathsf{E}_{_{\mathsf{TM}}}$, we can decide $\mathsf{A}_{_{\mathsf{TM}}}$

$E_{\rm TM}$ is undecidable (approach 2)

Let's prove that E_{TM} is undecidable

 $\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

M and w are hard-coded constants

What is L(P)?

If *M* accepts *w* then $L(P) = \Sigma^*$

If *M* doesn't accept *w* then $L(P) = \emptyset$ $\langle P \rangle \in E_{TM} \Leftrightarrow \langle M, w \rangle \notin A_{TM}$

$E_{\rm TM}$ is undecidable (approach 2) Let's prove that $E_{\rm TM}$ is undecidable

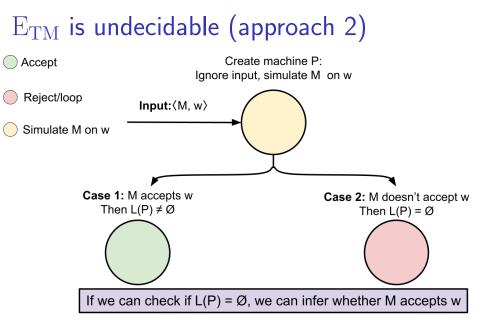
 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

M and w are hard-coded constants

- 3. Use M_E to check if $\langle P \rangle \in \mathrm{E}_{\mathrm{TM}}$
 - 3.1 If M_E accepts $\langle P \rangle$, D rejects $\langle M, w \rangle$
 - 3.2 If M_E rejects $\langle P \rangle$, D accepts $\langle M, w \rangle$



 E_{TM} is undecidable (approach 2) A_{TM} = {<M, w> | M accepts w} E_{TM} = {<M> | L(M) = ∅} D M Accept no Create machine P: Use M_c to <M, w> ves Take input s check if Reject Ignore s, run M 2. L(P) = Ø on w

If we can decide E_{TM} , we can decide A_{TM}

Consider the following language

$$\mathrm{ALL_{TM}} = \{ \langle M \rangle | L(M) = \Sigma^* \}$$

We receive a TM description as input, and want to figure out if that TM accepts everything

$$11 \, / \, 41$$

ALL_TM is undecidable

Let's prove that ALL_TM is undecidable

 $ALL_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

- \blacktriangleright Hint 1: Reduce from $A_{\rm TM}$
- Hint 2: Your solution will involve constructing a machine P at runtime

$$12 \, / \, 41$$

ALL_{TM} is undecidable (approach 1)

Let's prove that ALL_TM is undecidable

 $ALL_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 *P* receives *s* as input 2.2 If s = w, run *M* on *s* If $s \neq w$, accept *M* and *w* are hard-coded constants

${\rm ALL_{TM}}$ is undecidable (approach 1) Let's prove that ${\rm ALL_{TM}}$ is undecidable

 $\mathrm{ALL_{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

2.2 If
$$s = w$$
, run M on s

If $s \neq w$, accept

M and w are hard-coded constants

What is L(P)? If M accepts w then $L(P) = \Sigma^*$ If M doesn't accept w then $L(P) = \Sigma^* \setminus \{w\}$ $\langle P \rangle \in ALL_{TM} \Leftrightarrow \langle M, w \rangle \in A_{TM}$ 1

${ m ALL_{TM}}$ is undecidable (approach 1) Let's prove that ${ m ALL_{TM}}$ is undecidable

 $\mathrm{ALL_{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P

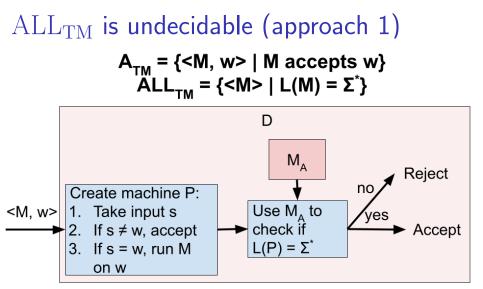
2.2 If
$$s = w$$
, run M on s

If $s \neq w$, accept

M and w are hard-coded constants

- 3. Use M_A to check if $\langle P \rangle \in ALL_{TM}$ 3.1 If M_A accepts $\langle P \rangle$, D accepts $\langle M, w \rangle$
 - 3.2 If M_A rejects $\langle P \rangle$, D rejects $\langle M, w \rangle$

ALL_{TM} is undecidable (approach 1) Create machine P: Accept Accept if input \neq w, otherwise simulate M Reject/loop Input: $\langle M, w \rangle$!w Simulate M Case 1: M accepts w Case 2: M doesn't accept w Then L(P) = Σ^* Then L(P) $\neq \Sigma^*$!w !w If we can check if $L(P) = \Sigma^*$, we can infer whether M accepts w



If we can decide $\mathsf{ALL}_{\mathsf{TM}}$, we can decide A_{TM}

ALL_{TM} is undecidable (approach 2)

Let's prove that ALL_TM is undecidable

 $ALL_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - $2.2\,$ Ignore s, run M on w

M and w are hard-coded constants

16

${\rm ALL_{TM}}$ is undecidable (approach 2) Let's prove that ${\rm ALL_{TM}}$ is undecidable

 $\mathrm{ALL_{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - $2.2\,$ Ignore s, run M on w

M and w are hard-coded constants

16

What is L(P)?

If *M* accepts *w* then $L(P) = \Sigma^*$

If *M* doesn't accept *w* then $L(P) = \emptyset$ $\langle P \rangle \in ALL_{TM} \Leftrightarrow \langle M, w \rangle \in A_{TM}$

${\rm ALL_{TM}}$ is undecidable (approach 2) Let's prove that ${\rm ALL_{TM}}$ is undecidable

 $ALL_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - $2.2\,$ Ignore s, run M on w

M and w are hard-coded constants

- 3. Use M_A to check if $\langle P \rangle \in ALL_{TM}$
 - 3.1 If M_A accepts $\langle P \rangle$, D accepts $\langle M, w \rangle$
 - 3.2 If M_A rejects $\langle P \rangle$, D rejects $\langle M, w \rangle$

ALL_{TM} is undecidable (approach 2) Create machine P: Accept Ignore input, simulate M on w Reject/loop Input: $\langle M, w \rangle$ Simulate M on w Case 1: M accepts w Case 2: M doesn't accept w Then L(P) = Σ^* Then L(P) $\neq \Sigma^*$ If we can check if $L(P) = \Sigma^*$, we can infer whether M accepts w

 ALL_{TM} is undecidable (approach 2) $A_{TM} = \{<M, w> | M accepts w\}$ $ALL_{TM} = \{<M> | L(M) = \Sigma^*\}$ D M_A Reject no Create machine P: Use M₄ to <M, w> ves Take input s check if Accept Ignore s, run M 2. $L(P) = \Sigma^*$ on w

If we can decide $\mathsf{ALL}_{\mathsf{TM}}$, we can decide A_{TM}

The language EQ_TM

$\mathrm{EQ_{TM}} = \{ \langle \textit{M}_1,\textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2) \}$

We receive two Turing machine descriptions, and we want to determine out if the two machines are equivalent

- Can we write a script to check that your programming assignment submissions are equivalent to my solution code?
 - "equivalent" as in "the EXACT same output on ALL (possible) test cases"

19

$\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2) \}$$

We will reduce from each of the following languages

$$\begin{split} \mathbf{A}_{\mathrm{TM}} &= \{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle | \boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{M}) \} \\ \mathbf{E}_{\mathrm{TM}} &= \{ \langle \boldsymbol{M} \rangle | \boldsymbol{L}(\boldsymbol{M}) = \emptyset \} \\ \mathrm{ALL}_{\mathrm{TM}} &= \{ \langle \boldsymbol{M} \rangle | \boldsymbol{L}(\boldsymbol{M}) = \boldsymbol{\Sigma}^* \} \end{split}$$

 EQ_{TM} is undecidable (approach 1)

Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2

2.1 M_2 receives s as input

2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

 $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable (approach 1) Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2

2.1 M_2 receives s as input

2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

When are M and M_2 equivalent? $L(M) = L(M_2) \Leftrightarrow M$ accepts w

 $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable (approach 1) Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2

2.1 M_2 receives s as input

2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

21

3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ}_{\mathrm{TM}}$

 $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable (approach 1) Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

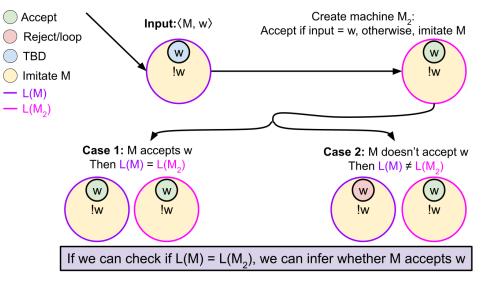
- 1. *D* receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2

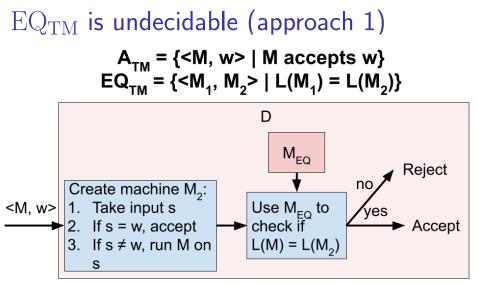
2.1 M_2 receives s as input

2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ}_{\mathrm{TM}}$
 - 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M, w \rangle$
 - 3.2 Otherwise D rejects $\langle M, w \rangle$

$\mathrm{EQ}_{\mathrm{TM}}$ is undecidable (approach 1)





If we can decide $\mathsf{EQ}_{\mathsf{TM}},$ we can decide A_{TM}

EQ_{TM} is undecidable (approach 2)

Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from E_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide E_{TM}

- 1. *D* receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset

 EQ_{TM} is undecidable (approach 2) Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from E_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide E_{TM}

1. D receives $\langle M \rangle$ as input

2. Create a new machine M_2 that recognizes \emptyset When are M and M_2 equivalent? $L(M) = L(M_2) \Leftrightarrow L(M) = \emptyset$

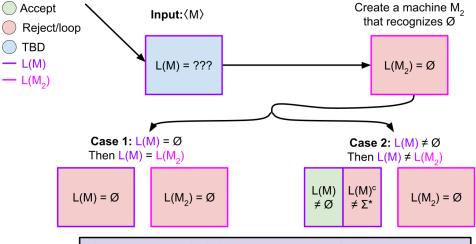
 ${\rm EQ_{TM}}$ is undecidable (approach 2) Let's prove that ${\rm EQ_{TM}}$ is undecidable

$$\mathrm{EQ_{TM}} = \{ \langle \textit{M}_1,\textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2) \}$$

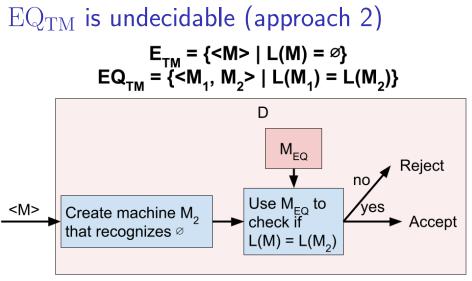
Reduce from E_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide E_{TM}

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset
- Use *M_{EQ}* to check if ⟨*M*, *M*₂⟩ ∈ EQ_{TM}
 If *M_{EQ}* accepts ⟨*M*, *M*₂⟩, then *D* accepts ⟨*M*⟩
 Otherwise *D* rejects ⟨*M*⟩

EQ_{TM} is undecidable (approach 2)



If we can check if $L(M) = L(M_2)$, we can infer whether $L(M) = \emptyset$



If we can decide $\mathsf{EQ}_{\mathsf{TM}},$ we can decide E_{TM}

 $26 \, / \, 41$

EQ_{TM} is undecidable (approach 3)

Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from ALL_{TM}: AFSOC machine M_{EQ} decides EQ_{TM}. We will construct a machine D to decide ALL_{TM}

- 1. *D* receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^*

27

 EQ_{TM} is undecidable (approach 3)

Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

Reduce from ALL_{TM}: AFSOC machine M_{EQ} decides EQ_{TM}. We will construct a machine D to decide ALL_{TM}

1. *D* receives $\langle M \rangle$ as input

2. Create a new machine M_2 that recognizes Σ^* When are M and M_2 equivalent? $L(M) = L(M_2) \Leftrightarrow L(M) = \Sigma^*$

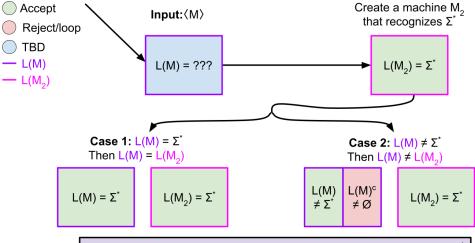
 ${\rm EQ_{TM}}$ is undecidable (approach 3) Let's prove that ${\rm EQ_{TM}}$ is undecidable

$$\mathrm{EQ_{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

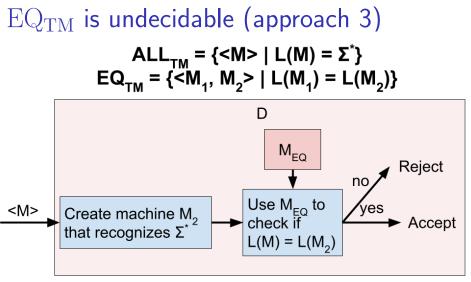
Reduce from ALL_{TM}: AFSOC machine M_{EQ} decides EQ_{TM}. We will construct a machine D to decide ALL_{TM}

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^*
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in EQ_{TM}$
 - 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise *D* rejects $\langle M \rangle$

EQ_{TM} is undecidable (approach 3)



If we can check if $L(M) = L(M_2)$, we can infer whether $L(M) = \Sigma^*$



If we can decide $\mathsf{EQ}_{\mathsf{TM}}$, we can decide $\mathsf{ALL}_{\mathsf{TM}}$

 $29 \, / \, 41$

Consider the following language

$$SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$$

We receive two machines M_1 , M_2 as input. We want to determine if M_1 is contained within M_2

$\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$$

We will reduce from each of the following languages

$$\begin{split} \mathrm{E}_{\mathrm{TM}} &= \{ \langle \boldsymbol{M} \rangle | \boldsymbol{L}(\boldsymbol{M}) = \emptyset \} \\ \mathrm{ALL}_{\mathrm{TM}} &= \{ \langle \boldsymbol{M} \rangle | \boldsymbol{L}(\boldsymbol{M}) = \boldsymbol{\Sigma}^* \} \\ \mathrm{EQ}_{\mathrm{TM}} &= \{ \langle \boldsymbol{M}_1, \boldsymbol{M}_2 \rangle | \boldsymbol{L}(\boldsymbol{M}_1) = \boldsymbol{L}(\boldsymbol{M}_2) \} \end{split}$$

 SUB_{TM} is undecidable (approach 1)

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

Reduce from E_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide E_{TM} as follows:

- 1. *D* takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset

32

 ${
m SUB}_{
m TM}$ is undecidable (approach 1) Let's prove that ${
m SUB}_{
m TM}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

Reduce from E_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide E_{TM} as follows:

- 1. *D* takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset

When does M_2 contain M? $L(M) \subseteq L(M_2) \Leftrightarrow L(M) \subseteq \emptyset \Leftrightarrow L(M) = \emptyset$ $\langle M, M_2 \rangle \in \text{SUB}_{\text{TM}} \Leftrightarrow \langle M \rangle \in \text{E}_{\text{TM}}$

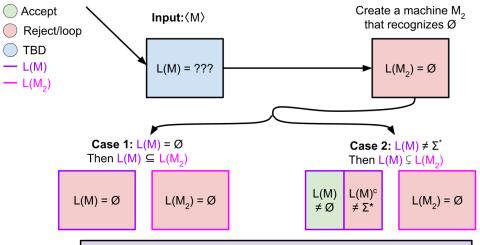
 ${
m SUB}_{
m TM}$ is undecidable (approach 1) Let's prove that ${
m SUB}_{
m TM}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

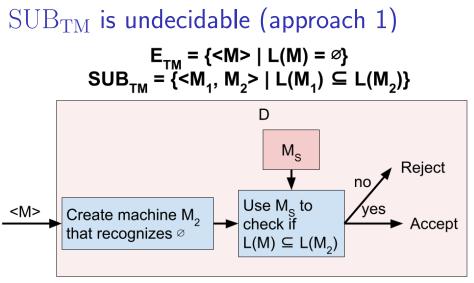
Reduce from E_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide E_{TM} as follows:

- 1. *D* takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset
- 3. Use M_5 to check if $\langle M, M_2 \rangle \in \text{SUB}_{\text{TM}}$ "Is M contained within a machine that accepts nothing?"
 - 3.1 If M_S accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise, D rejects $\langle M \rangle$

SUB_{TM} is undecidable (approach 1)



If we can check if $L(M) \subseteq L(M_2)$, we can infer whether $L(M) = \emptyset$



If we can decide $\mathsf{SUB}_{\mathsf{TM}},$ we can decide E_{TM}

 SUB_{TM} is undecidable (approach 2)

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

Reduce from ALL_{TM}: AFSOC SUB_{TM} is decided by machine M_5 . We will construct a machine D to decide ALL_{TM} as follows:

- 1. *D* takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*

35

 ${
m SUB}_{
m TM}$ is undecidable (approach 2) Let's prove that ${
m SUB}_{
m TM}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

Reduce from ALL_{TM}: AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide ALL_{TM} as follows:

1. *D* takes $\langle M \rangle$ as input

2. Construct a machine M_2 that recognizes Σ^* When does M contain M_2 ? $L(M_2) \subseteq L(M) \Leftrightarrow \Sigma^* \subseteq L(M) \Leftrightarrow L(M) = \Sigma^*$ $\langle M_2, M \rangle \in \text{SUB}_{\text{TM}} \Leftrightarrow \langle M \rangle \in \text{ALL}_{\text{TM}}$

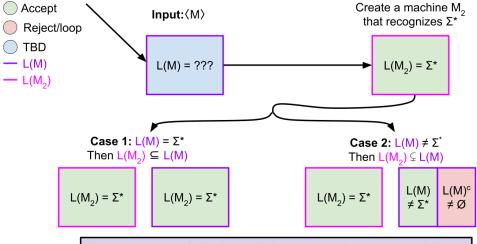
 ${
m SUB}_{
m TM}$ is undecidable (approach 2) Let's prove that ${
m SUB}_{
m TM}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

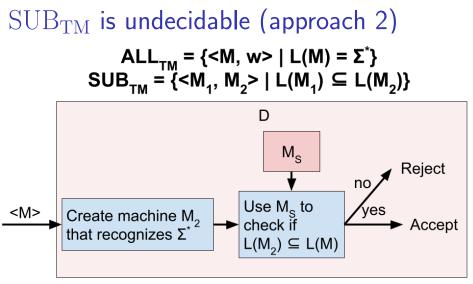
Reduce from ALL_{TM}: AFSOC SUB_{TM} is decided by machine M_5 . We will construct a machine D to decide ALL_{TM} as follows:

- 1. *D* takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*
- 3. Use M_5 to check if $\langle M_2, M \rangle \in \text{SUB}_{\text{TM}}$ "Does M contain a machine that accepts everything?"
 - 3.1 If M_S accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise, D rejects $\langle M \rangle$

SUB_{TM} is undecidable (approach 2)



If we can check if $L(M_2) \subseteq L(M)$, we can infer whether $L(M) = \Sigma^{\dagger}$



If we can decide $\mathsf{SUB}_{\mathsf{TM}}$, we can decide $\mathsf{ALL}_{\mathsf{TM}}$

SUB_{TM} is undecidable (approach 3)

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide EQ_{TM} as follows:

1. *D* takes $\langle M_1, M_2 \rangle$ as input

 SUB_{TM} is undecidable (approach 3)

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_5 . We will construct a machine D to decide EQ_{TM} as follows:

1. *D* takes $\langle M_1, M_2 \rangle$ as input When does M_1 equal M_2 ? $L(M_1) = L(M_2) \Leftrightarrow L(M_1) \subseteq L(M_2) \land L(M_2) \subseteq L(M_1)$ $\langle M_1, M_2 \rangle \in EQ_{TM} \Leftrightarrow \langle M_1, M_2 \rangle, \langle M_2, M_1 \rangle \in SUB_{TM}$

 ${
m SUB}_{
m TM}$ is undecidable (approach 3) Let's prove that ${
m SUB}_{
m TM}$ is undecidable

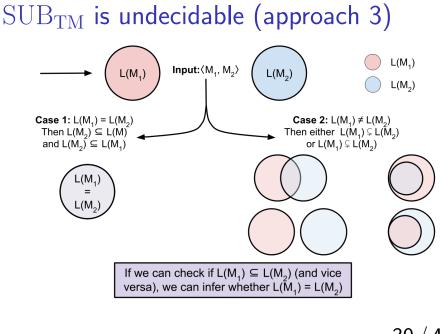
 $SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_5 . We will construct a machine D to decide EQ_{TM} as follows:

- 1. *D* takes $\langle M_1, M_2 \rangle$ as input
- 2. Use M_5 to check if $\langle M_1, M_2 \rangle \in \text{SUB}_{\text{TM}}$ and $\langle M_2, M_1 \rangle \in \text{SUB}_{\text{TM}}$
 - "Do M_1 and M_2 contain each other?"
 - 2.1 If M_S accepts $\langle M_1, M_2 \rangle$ and $\langle M_2, M_1 \rangle$, then D accepts $\langle M_1, M_2 \rangle$

38

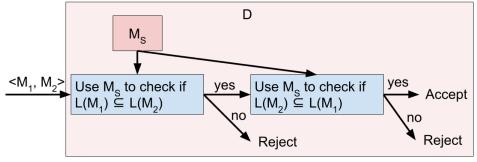
2.2 Otherwise, D rejects $\langle M_1, M_2 \rangle$



 SUB_{TM} is undecidable (approach 3)

$$EQ_{TM} = \{ | L(M_1) = L(M_2) \}$$

$$SUB_{TM} = \{ | L(M_1) \subseteq L(M_2) \}$$



If we can decide SUB_{TM} , we can decide EQ_{TM}

Reducibility

Recap: If we could solve certain problems, we would be able to solve other problems

- We can use reducibility to prove undecidability
- If A ≤_T B and A is known to be undecidable, then B must also be undecidable