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EPIGRAPH

You get three ants together, they can’t do dick. You get 300 million of them, they can build a cathedral.

- Annie Savoy, Bull Durham
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ABSTRACT OF THE DISSERTATION

Derivation and Analysis of Distributed Computing Algorithms in Biological Systems

by

Arjun Chandrasekhar

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2020

Professor Saket Navlakha, Chair
Professor Deborah Gordon, Co-Chair
Professor Glenn Tesler, Co-Chair

There are numerous examples of biological systems outperforming human-designed algorithms at

engineering tasks. Rather than relying on one central controller, these systems rely on distributed agents

following simple local interaction rules that yield complex collective behavior. My research studies these

biological systems systems in order to reverse-engineer optimization algorithms, with a focus on designing

robust, efficient routing networks.

Repairing broken links is a fundamental problem for human-designed routing networks, as well

as trail networks used by ants to travel between nests and food sources. Many ant species have evolved

methods to solve the repair problem undermore restrictive constraints than those faced by human engineers.

Arboreal turtle ants are especially interesting, because their movements are constrained by the branches

in the vegetation. I defined a mathematical model for the unique repair problem faced by turtle ants. I

demonstrated techniques for using turtle ant behavioral data to derive a distributed repair algorithm and infer

xii



critical features of turtle ant behavior. The algorithm is biologically realistic, scalable, and robust to a variety

of topologies. I then analyzed data on trail networks formed by turtle ants over several days to conclude

that turtle ant trail networks eschew shorter branches in favor of nodes whose physical orientations allow

for quicker pheromone reinforcement.

Human-designed routing networks often seek to maximize efficiency while minimizing cost. These

objectives often conflict, which necessitates manage trade-offs. Neural arbors face a similar challenge of

conducting signals quickly while conserving material. I defined a mathematical framework for the multi-

objective optimization problem that neural arbors face. I showed that neural arbors are significantly better at

optimizing trade-offs between material cost and signal delay than would be expected by chance. I showed

how this framework can be used to predict an arbor’s structure based on its function. My work confirms

the value of using neural arbors as inspiration for network design algorithms, and identifies promising new

avenues for neuroanatomy research.

My research highlights the symbiotic relationships between biology and computer science: collect-

ing and analyzing behavioral data can inform algorithm design, while algorithmic thinking can elucidating

novel behavioral patterns.
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Introduction

Algorithms in nature

There are numerous examples of natural systems that must overcome challenges faced by engi-

neering systems [1]. Ant colonies must navigate between nests and food sources [2, 3, 4]; bee colonies

must find fruitful foraging sites [5]; birds flocks must organize into advantageous formations [6]; neural ar-

bors must grow in search of synaptic connections [7]. These systems must solve problems under restrictive

circumstances. The individual agents in these systems are unlikely to have enough memory to scan, re-

member, and process all of the available information. It is also unrealistic for any one agent to direct the

behavior of the rest of the group.

Many well-known combinatorial optimization problems seek to optimize objectives such as maximal

payoff or minimal cost [8], or some combination thereof [9]. In this way, engineered and biological systems

both benefit from increased efficiency. Both human-designed wireless communication networks [10] and

ant-designed foraging networks [4] benefit from taking less time to transport as many resources as possible.

Both immune systems [11] and swarm robots [12] benefit from taking less to scour in search of a target. Both

Google image search [13] and the fly olfactory system [14] benefit from identifying images or odors with high

accuracy. Thus, selective pressure often acts in favor of these objectives. However, these systems often

differ in how strongly they prioritize robustness. Biological systems cannot know what changes will occur

to the problem they are trying to solve, the environment in which they solve it, or the adversarial forces that

try to impede them. Compared to humans, ecological and molecular systems do not have the same ability

to manipulate these variables. Moreover, biological systems are liable to lose components of the system

at any time, e.g., ants can get lost, bees can die, and T-cells can dysfunction. All of this means biological

systems require flexible methods, perhaps at the cost of finding optimal solutions [15, 16]. While engineering

systems often include robustness protocols, such as fault-tolerance [17], this is usually a secondary goal.

What is perhaps most fascinating about biological systems is the fact that they consistently match,

1



and sometimes exceed, the performance of human-designed systems. For example, long before humans

created TCP/IP protocol to manage internet traffic, harvester ants evolved a similar algorithm to modulate

the rate of outgoing foragers to match the availability of food [18]. Argentine ants create trail networks that

are remarkably similar to Steiner trees [19]. The olfactory circuit in flies classifies odors based on previously

encountered odors, and it does somore efficiently than human algorithms designed for similar problems [14].

Studies show that natural immune systems achieve scale-invariant responses to infections; that is, the time

to neutralize a pathogen does not systematically increase with body size [20].

Notably, many biological systems remain astoundingly robust to disruptions [15, 16]. Bacteria adapt

colony growth patterns to different media [21], and the immune response is legendary for its antibody di-

versity in response to invasive bacteria [11]; Argentine ants are equal-opportunity invaders, adapting their

foraging behavior to a variety of environments [22]; fish schools show strong abilities to escape from traps

or other uncomfortable spaces [23].

The reason why natural systems solve problems so well is that natural selection is ruthless, and

necessity is the mother of invention. Species go extinct if they fail to evolve a method to solve challenges

within the existing constraints. Moreover, unlike engineered systems, biological systems have evolved and

refined the methods they use on evolutionary timescales. This combination of selective pressure and time

often yields an effective and practical method. As a result, if we could design a method identical to the

methods evolved by species fighting for their survival, we would end up reverse-engineering useful, and

highly robust, methods for the engineering problems that humans face. We may also understand biological

systems better by using engineering principles to explain their behavior.

This insight was put to use by inventor Georges de Mestral when he went for a walk in 1941. Initially

frustrated by the burrs that clung to his dog and his legs, he soon became curious about whether their

adhesive properties could be harnessed in a useful way. He soon created two straps, one with hooks and

one with loops, that held firm when pressed together. So was born two things: the product of velcro [24],

and the research field of biologically inspired materials [25]. Eventually, computer scientists began following

in the footsteps of Georges de Mestral by looking towards nature for solutions. Rather than trying to reverse

engineer materials, computer scientists seek to reverse engineer algorithms used by biological species to

solve computational tasks; these algorithms are sometimes called algorithms in nature [26, 27, 28].

Distributed computation

Reasoning about the computation performed by biological systems requires carefully defining the

concept of computation. Many classical computer science algorithms rely on centralized computing: a
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single central processor accesses the full input, keeps track of all intermediate computations, and produces

an output. Centralized computing is popular in part because it is intuitive to reason about the capabilities of

centralized algorithms; there is a vast array of literature on decidability and tractability results for centralized

models of computation. The other dominant paradigm in computer science is distributed computing. In the

distributed paradigm, several agents work collectively to solve a problem. Each agent may only access a

portion of the input at a given time, and may perform limited local communication with nearby agents. In

principle each agent may carry out any computable function, but in practice each agent typically carries out a

simple algorithm. The system produces an output in the form of agents achieving some desired configuration

of states. The distributed paradigm of computing is often considered desirable for several reasons. First,

distributed algorithms often have low overhead cost because each agent requires less computational power.

Second, distributed algorithms are robust to changes to the input; because no agent needs access to the

full input, the same algorithm that can generate a solution can easily repair a solution through simple local

interactions involving only a fraction of the agents. Third, distributed algorithms are robust to the failures of

a single agent, because the system is not dependent on a single controller. Fourth, distributed algorithms

are easily scalable – it is often easier to add more agents than to update a single central controller.

The distributed paradigm is a more realistic model for how biological systems solve problems algo-

rithmically. Each individual only needs to be responsible for performing a simple algorithm based on local

information and communication with nearby individuals. Despite relying on local simplicity, these systems

produce complex collective behavior and elegant emergent properties that allows them to overcome the

challenges they face: ants successfully form trail networks, bees find enough nectar to support the colony,

birds assemble in a V-formation, and neurons form networks of arbors to carry out all the necessary nervous

system functions. The goal is to design algorithms that mimic this behavior.

In the centralized paradigm, defining an algorithm is usually straightforward: following the Turing

machine model, the machine starts with the full input encoded as a string on the tape; the tape head per-

forms the read/write operations prescribed by the algorithm, and leaves the output as a string on the tape.

Defining a distributed algorithm, especially one that attempts to mimic biology, involves defining the following

components of the computation:

1. An appropriate model of computation, such as a finite automata or a Turing machine, which determines

the operations each agent can and cannot perform.

2. An appropriate model of computation, such as message passing or shared memory, for how agents

are allowed to communicate.

3. The computational problem the agents must solve, including precise definitions of the inputs and out-
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puts: what information do agents receive, and what information does the system emit as output?

4. An algorithm that is feasible within the chosen model of computation, which each agent performs

independently.

Significant work has gone into the first three components. Some popular biological distributed computing

models include the following [29]: beeping [30], in which an agent may either emit a unary ‘beep’ signal, or

determine if at least one of its neighbors beeped (but not both); the stone age model [31], in which agents

are finite state machines that may sends and receives characters from some finite alphabet, but can only

count up to a fixed number when counting how many times it has received each character; population pro-

tocols [32], in which pairs of interactions agents may freely send messages, but interactions are scheduled

either randomly or by an adversary; and shared memory [33], in which agents read, write, and erase infor-

mation from a shared memory source rather than communicating directly. After defining a suitable model

of computation, the challenge is to design the right local interaction rules so that the agents collectively

maneuver to solve the problem.

Nature-inspired metaheuristics

Drawing inspiration from nature has allowed computer scientists to develop several different meta-

heuristics, i.e., classes of algorithms that follow the same general framework for how agents receive input,

make decisions, and communicate. Each metaheuristic observes a particularly innovative behavior used by

some natural system, and adapts this to help distributed agents communicate and process input more effi-

ciently; from here, different implementation choices, such as the computational power of individual agents or

the local interaction rules used by each agent, lead to different variants. These metaheuristics demonstrate

the ways that biological principles can improve optimization algorithms, but they often sacrifice biological

realism to do so. This indicates that it is possible to design biological metaheuristics can be improved to use

even fewer resources than they already do without sacrificing performance. This will lead to more scalable

algorithms, and also make the algorithms more useful as tools for generating biological hypotheses and

predictions.

Ant colony optimization

One of the pioneering entries into the field of natural computing was ant colony optimization

(ACO) [34]. This algorithm takes inspiration from the pheromone-laying behavior of ants to solve combi-

natorial optimization problems. Initially, ACO was created to the travelling salesman problem (TSP). In this

4



problem, the input is a complete, weighted graph in which nodes represent cities, and edge weights rep-

resent the distance or time required to travel between a pair of cities. A TSP tour is a path that touches

every city exactly once; the goal is to find the TSP tour that minimizes the sum of the lengths of all edges

traversed. The distributed agents are ants that continuously perform a random walk on the graph. At each

time step, ants move from one city to the next. Ants may lay pheromone on an edge, to signal to other ants

to use that edge; pheromone levels decay over time. When an ant chooses its next edge, it may take into

account the weight of each edge, as well as the current amount of pheromone on each edge. In principle,

the ants may use any Turing-computable function to stochastically choose the next edge based on the edge

weights and pheromone levels. The goal is to output an optimal TSP tour in the form of a graph that has

high pheromone levels on edges that are part of the optimal tour, and low pheromone levels on all other

edges.

In the first ACO algorithm, called Ant System, each ant uses a simple formula to compute the prob-

ability of taking each of the available edges [34]. Over time ants will deposit more pheromone on edges that

are part of better tours, which in turn makes them more likely to take and reinforce better tours, thus creating

a positive feedback cycle that leads to an optimal solution. In practice, Ant System is highly competitive with

traditional heuristics on inputs up to certain sizes [35]. In subsequent years, several improvements have

been made to ACO that involve allowing ants to use local search to improve their initial pheromone-based

solutions [36]. Over time, ACO has been been generalized to solve other combinatorial optimization prob-

lems, by using pheromone to reinforce generalized solution components rather than edges in a graph [37].

Subsequent metaheuristics

ACO illustrates much of the power and appeal of using distributed computation, and of taking in-

spiration from nature. By borrowing the concept of trail pheromone from ants, ACO manages to greatly

improve on traditional TSP heuristics. It is an elegant example of emergent properties: each ant performs a

very simple algorithm, but collectively the colony approximates an NP-complete problem. The algorithm is

scalable, because there is little overhead cost to adding more ants. Perhaps most exciting is that ACO also

captures the robustness that is so appealing in biological systems. The algorithm can be run continuously,

and respond to changes to the input in a robust manner: if an edge breaks, or a new city gets added, the

algorithm can let the ants continue foraging and explore for a new and/or better path. The success of ACO

has inspired similar heuristics inspired by social animals: Artificial Bee Colony, in which simulated bees ‘for-

age’ for potential solutions, and use a waggle dance to recruit other bees [38]; Particle Swarm Optimization

in which birds in a flock attempt to find a solution by ‘flying’ towards global (or local) minima on a hypersur-
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face [39]; and krill heard, in which krill choose between moving towards food and following the movement

of nearby krill [40].

In addition to social insects, the human body has inspired metaheuristics for optimization. Two

notable examples include artificial immune systems [41], and artificial neural networks [42, 43]. Neural

networks have become particularly popular in recent years for their demonstrated effectiveness in machine

learning tasks such as natural language processing and image recognition [44]. The metaheuristic borrows

from neuroscience bymimicking the process by which the brain sends and receives electrical signals through

a network of interconnected neurons. In a typical neural network, there are several ‘layers’of neurons. Each

layer receives signals from neurons in the previous layer, does some computation with these inputs, and

then ‘fires’ outputs to the next layer. The first layer receives the input, and the final layer produces a final

output. For machine learning problems, the network is trained to extract patterns from a dataset of known

examples, so that it can classify new examples as either having or not having a certain property (e.g.,

predicting whether a Netflix user will like a new show based on his/her past ratings).

Based on the known examples, the nodes in the network adjust the values of the parameters they

use when processing input signals. The network is parameterized so that the final layer classifies as many

known examples correctly as possible. This is done using the backpropagation algorithm [45]. The algo-

rithm starts with random weights between layers, and iteratively updates the weights to reduce the differ-

ence between the correct outputs and network’s actual outputs. This is done going through all input/output

pairs, comparing the expected output to the network’s actual output, and recursively propagating backwards

through the layers to update weights based on the error in the network’s output. At each layer, the network

recursively computes the gradient of each weight from that layer, i.e., how output of the subsequent layers

changes in response to changes to that weight. Based on the gradient, the network updates the weight to

drive the network’s output closer to the desired output. After propagating through all layers of the network,

the algorithm moves on to the rest of the training examples and continues tuning weights.

The hope is that the weight parameters that best allow the network to classify known data will

also work well for new data. In practice, neural networks tend to outperform other methods on well-known

machine learning problems [46, 47], further confirming the power of nature-inspired algorithms.

Limits of nature-inspired metaheuristics

The algorithms described above are useful for solving optimization problems, and elegant examples

of using biology to improve computer science. However, they fail to explain how the biological systems solve

the problems that they do. They rely on computational sophistication that may not be biologically realistic. In
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particular, while these algorithms use biologically realistic communication protocols (i.e., pheromones and

local electrical signals) and individual decision-making rules, the models of computation these algorithms

afford each agent may be too powerful. For example, ACO provides each ant with theoretically unbounded

memory, even though it is generally assumed that social organisms such as ants and bees possess restricted

memory. The ants in ACO can remember and retrace entire TSP tours; it is unlikely, or at least unknown,

that ant species can do this. ACO also allows ants to adjust how much pheromone they lay based on

how optimal a particular TSP tour is; ants are not known to dynamically modulate how much pheromone

they deposit, and they certainly do not do so based on the utility of a particular path. Many neural network

algorithms also operate in a way that, while algorithmically useful, is not likely to be representative of how

actual neurons operate.

The fact that nature-inspired metaheuristics rely on overly powerful models of computation means it

may be possible be reduce their computational overhead costs without sacrificing performance. By reverse-

engineering biological algorithms in a way that is as faithful to the biology as possible, we can design algo-

rithms that succeed with astonishingly few resources [27].

In addition to the potential for discovering efficient algorithms, there are additional reasons for em-

phasizing biologically accurate algorithms going forward. First, in the past it may have been difficult to

determine what algorithmic techniques were and were not biologically realistic. However, recent hardware

and software advances in areas such as next-generation sequencing [48], image processing [49], numerical

computing [50], and animal tracking [51] allow us to more accurately quantify how natural systems can ac-

tually behave. Second, algorithmic thinking can inform biology. Casting a biological system as an algorithm

provides a framework for understanding the section pressures affecting the system, and the algorithmic

strategies the system evolved as a result. It also provides signposts for future biological research. The

nature of an algorithmic model is such that it provides concrete, mathematically precise predictions to be

tested. For example, if one were to discover a biologically realistic improvement to the biologically-inspired

algorithm, that would also lead to a precise hypothesis about what properties may exist in the biological sys-

tem. An elegant example of the value of algorithmic thinking for biologists is in the study of Argentine ants.

The mathematical theory of Steiner trees provides ant biologists with precise language for describing the

behavior and evolution of Argentine ant trail networks [19]. Modelling Argentine ant colonies as a distributed

Steiner ant algorithm creates testable hypotheses, such as whether Argentine ants have evolved specific

techniques, whether Argentine ants optimize other precisely defined design objectives, and whether trail

networks resemble Steiner trees in other ant species.
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A biologically faithful distributed algorithm

One exciting example of the power of biologically faithful algorithms involves recent research into

connections between image recognition and the fly olfactory circuit. When flies encounter a new odor,

they must classify the odor based on its similarity to previously encountered odors. This is similar to the

engineering problem encountered in machine learning: given an image, classify it based on its similarity to

images with known labels. Both problems can be classified as a version of similarity search: we start with

a database of known images/odors (encoded as real-valued vectors), and we encounter a new image/odor.

We seek to find the known image/odor which is most similar to the new vector (e.g., smallest vector distance).

It is assumed that a simple one-by-one comparison is infeasible due to the number of known odors/images,

as well as the sizes of the encodings of each odor/image. The traditional technique used in image search

is locality sensitive hashing: compress the encodings in such a way that if two odors/images were originally

similar, their compressed encodings are likely to be similar. This allows for significantly more efficient linear

similarity search to take place [52].

The fly olfactory system takes the opposite approach: it expands the size of the odor encoding [14].

Each glomureli neuron receives the input and randomly fires a signal to a small number of Kenyon cell

neurons. The Kenyon cells sum up the signal they receive, and all but the highest signals are inhibited.

This creates a larger, but sparser (i.e., more 0’s) encoding of the odor. This expanded encoding is then

compared against known odors.

It may seem counter-intuitive that the fly would expand the size of the input. However, in prac-

tice the fly algorithm tends to outperform algorithms based on locality-sensitive hashing [14]. Upon further

inspection, this is because by expanding the input, the fly algorithm is able to compare extremely sparse

vectors, which can be done more efficiently than with small but dense vectors. Intuitively, expanding and

sparsifying both the input vector and known vectors amplifies differences between odors, and more starkly

clusters similar odors.

This work demonstrates the value of developing an algorithm based on faithfully and rigorously

following the biology. Not only does an algorithm based on the fly olfactory system outperform human

algorithms at a fundamental engineering problem; it inspires outside-the-box techniques, and illuminates

new insights into the nature of the problem. Other recent examples of this include: a fly-inspired algorithm

for constructing a maximal independent set [30], and an immune-system inspired algorithm to search a

space for adversarial particles [53]. This work also highlights the value of algorithmic thinking to biology:

it provides an explanation for the evolutionary path of the fly olfactory system, and allows biologists to ask

precise questions about how olfaction may to work in flies and other animals.
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Contributions of this dissertation

My research contributes to the field of algorithms in nature by studying how biological systems

overcome challenges related to designing and maintaining routing networks. To do this, I apply algorithmic

thinking to two biological systems that are particularly interesting from a computational perspective: turtle

ants, and neural arbors. I demonstrate techniques for analyzing turtle ant data to identify useful network

design principles and derive new algorithmic methods for repairing routing networks. I propose a mathe-

matical model for the design trade-offs faced by neural arbors, and demonstrate that neural arbors optimize

these trade-offs exceptionally well. I then use this model to identify key differences in how certain types of

neurons prioritize different design design objectives.

Overall, my work illuminates the value in using biological systems as inspiration for new mathemat-

ics and computer science results. In doing so, my work suggests that common engineering problems can

be solved using very restrictive models of computation, thus raising several open questions in the field of

distributed computing algorithms. My work also draws fascinating connections between turtle ant behavior

and random walk theory, suggesting that probability theorists and ant biologists may benefit from collabora-

tion. Finally, I also show how algorithmic models of biological systems naturally produce precise, testable

hypotheses about how biological systems behave. My work uses algorithmic thinking to produce specific

hypotheses about turtle ant pheromone regulation and structure-function relationships in neural arbors.

Foraging algorithms in turtle ant colonies

My first two chapters describe research into an algorithm used by the genusCephalotes (colloquially

known as turtle ants), to solve the fundamental engineering problem of constructing, maintaining, and repair-

ing a routing network. Most ant species, are terrestrial – that is, they forage on dry land, a continuous space.

Species such as Argentine ants [19], pharaoh ants [54], and harvester ants [18, 55] have been the source

of biologically-inspired foraging algorithms. Unlike these species, turtle ants are arboreal – they nest and

forage in trees. The vegetation in which they forage can be represented as a discrete graph: branches cor-

respond to edges, and overlapping branches form a node. This makes their foraging behavior exciting from

a computer science perspective, because unlike for terrestrial species, turtle ant foraging is analogous to

traversing a path within a graph. Turtle ants must form a foraging network connecting several nests and food

sources [56, 3]. The vegetation in which the turtle ants forage is volatile. Connections between branches

and vines can be fragile, and can be broken by disruptions such as intruders or inclement weather. Turtle

ant foraging behavior must be robust to these situations. My first chapter shows how studying turtle ants

allows us to derive an effective algorithm for repairing broken links in routing networks. I provide evidence
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that turtle ants evolved an algorithm that is robust to a wide variety of situations, at the possible expense of

being optimal for any one situation. I identify critical features for the success of the our ant-inspired algo-

rithm, leading to hypotheses about whether turtle ants have evolved similar algorithmically advantageous

behaviors. Overall, I demonstrate the potential for ant biology to lead us to new results in graph theory, dis-

tributed computing, and (perhaps more surprisingly), probability theory, while demonstrating the potential

for computer science to lead us to testable hypotheses in ant biology.

Trade-offs in turtle ant trail networks

My second chapter begins to tackle the problem of understanding how turtle ants initially form the

trail networks that they later repair. Traditionally, artificial routing networks are designed to manage trade-

offs between efficiency and robustness [17]. Turtle ant trail networks must account for additional challenges,

such as variation in the physical properties of branches, and the possibility of ants getting lost. I hypothesize

three design principles that guide the structure of the trail networks used by turtle ants. I tested these three

hypotheses by analyzing data on trail networks formed by three different turtle ant colonies over the course

of several days. From the data, I concluded that turtle ants take advantage of physical variation in the

vegetation to ensure that ants stay attached to the trail. This research further demonstrates the power of

studying turtle ants to discover new insights into graph algorithms and distributed computing. Turtle ants

use physical variation to enhance coordination among the colony, and human-designed systems such as

robot swarms may benefit from doing the same. Furthermore, this chapter provides a clear example of how

algorithmic thinking can inform biology. Viewing a turtle ant colony as a distributed routing network algorithm

gives us precise language with which to make predictions about what behavior we expect to observe.

Pareto-optimal trade-offs in neural arbors

My third chapter continues my research into biologically generated routing networks. Neural arbors

consist of a cell body (soma), and several wires called axons and dendrites that form synaptic connections

with other neurons. The process by which neural arbors grow in search of synaptic connections can be

viewed as a transport network design problem. One one hand, it is advantageous to design a network in

which electrical signals can travel quickly between the soma and each synapse. However, the structure that

minimizes travel time may be very expensive in terms of material cost. Neural arbors must manage this

trade off. In most cases, there does not exist a tree that simultaneously optimizes both of these objectives;

the best the arbor can hope to do is construct a Pareto-optimal arbor.

In multi-objective optimization, a solution is Pareto-optimal it is impossible to improve one aspect of
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the solution without making another aspect worse. The solution is optimal in the sense that no other solution

is superior for all of the objectives. The concept of Pareto-optimality was originally invented to analyze

optimal solutions in economics [57] and engineering [58]. Recent research identifies how several biological

species, such as rodents and finches, arrive at Pareto-optimal phenotypes through years of evolution [59].

I tested and validated the hypothesis that neural arbors have also evolved Pareto-optimal arbor mor-

phology phenotypes. My work demonstrates that neural arbors manage to solve a fundamental engineering

problem nearly as well as a centralized computing algorithm, likely without the computational sophistication

necessary to perform centralized computation. This suggests that by studying growth rules for developing

neurons, we may eventually derive a distributed algorithm to solve a network optimization problem with

extremely limited computational resources. I use this model to propose hypotheses on possible structure-

function relationships in different types of neurons, as well as similarities between plant and neural arbors,

further confirming the value of using algorithmic models for biological systems.
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Chapter 1

A Distributed Algorithm to Maintain and

Repair the Trail Networks of Arboreal

Ants

In this chapter, I explore connections between ant biology and network routing algorithms. I show

how field observations from arboreal turtle ants can be used to reverse-engineer an algorithm for a fun-

damental routing network problem, and I show how an algorithmic model of turtle ants can identify crucial

aspects of their foraging behavior that may be hard to detect otherwise.

12



Abstract

We study how the arboreal turtle ant (Cephalotes goniodontus) solves a fundamental computing

problem: maintaining a trail network and finding alternative paths to route around broken links in the net-

work. Turtle ants form a routing backbone of foraging trails linking several nests and temporary food sources.

This species travels only in the trees, so their foraging trails are constrained to lie on a natural graph formed

by overlapping branches and vines in the tangled canopy. Links between branches, however, can be

ephemeral, easily destroyed by wind, rain, or animal movements. Here we report a biologically feasible

distributed algorithm, parameterized using field data, that can plausibly describe how turtle ants maintain

the routing backbone and find alternative paths to circumvent broken links in the backbone. We validate the

ability of this probabilistic algorithm to circumvent simulated breaks in synthetic and real-world networks, and

we derive an analytic explanation for why certain features are crucial to improve the algorithm’s success.

Our proposed algorithm uses fewer computational resources than common distributed graph search algo-

rithms, and thus may be useful in other domains, such as for swarm computing or for coordinating molecular

robots.

1.1. Introduction

Distributed algorithms allow a collection of agents to efficiently solve computational problemswithout

centralized control [1]. Recent research has uncovered such algorithms implemented by many biological

systems, including slime molds during foraging [60] and neural circuits during development [61]. Ants are

a diverse taxon of more than 14,000 species that have also evolved distributed algorithms to establish

trail networks [19]. Investigating the algorithms used by biological systems can reveal novel solutions to

engineering problems [62, 61].

Here we present the first computational analysis, parameterized using data from field observations,

of trail networks of an arboreal ant species. The arboreal turtle ant C. goniodontus nests and forages in

the trees in the tropical dry forest of western Mexico [56]. Because the ants never leave the trees, their

foraging trails are constrained by a natural graph: branches and vines form the edges in the graph, and

junctions at overlapping branches form the nodes (Figure 1.1A–C). Each colony has several nests, located

in dead tree branches, that are connected to each other in a circuit or network routing backbone [19, 63,

64]. Moving on the trails along this backbone, the ants distribute resources among the juveniles, workers,

and reproductives in all of the nests, while additional temporary trails split from the backbone and lead to

food sources. The backbone trail network can be large, often extending over 50 meters in circumference,

13



A B

C

B

A
C

36
35

Figure 1.1: Turtle ant habitat and trail network. A) The photograph shows the highly tangled forest canopy
in which turtle ants forage. B) Experiments were performed in which an edge in the path was cut, to observe
how the ants respond and repair the break [3]. C) Modeling the trail network as a graph, with junctions as
nodes and connecting branches and twigs as edges. The diagram on the right from [3] shows a detailed
depiction of a large portion of the trail network. Each day’s path is shown in a different color (see legend),
and additional repair paths are shown in a distinct color. Solid lines connect two nodes that are on the same
plant (e.g. node 36 and node A are on the same plant). Dashed lines connect two nodes that are on a
different plant (e.g. nodes B and C are on different plants).

and encompassing numerous trees [56]. The ants use many junctions in dense vegetation, so trails can

be tortuous; each meter of linear distance typically requires ants to traverse approximately 2–5 meters of

vegetation [56]. The colony thus chooses paths in the network from a myriad of potential routes, dictated

by the graph structure of the vegetation. Ants lay trail pheromone as they move along the edges, and ants

use pheromone when choosing edges.

We present a distributed algorithm that can plausibly describe how turtle ants maintain and repair

breaks to their routing backbone. Links between branches or vines can be ephemeral, often disrupted by

wind, rain, or the movement of an animal through the vegetation. To re-establish connectivity of the routing

backbone after a break, the ants must establish a new path that reconnects the two sides of the broken trail.

This is an important problem in many network applications [65] and can be solved efficiently using numerous

graph algorithms, such as Dijkstra’s algorithm or the Bellman-Ford algorithm [66]. However, these classic
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algorithms require significantly more computation and memory than is likely available to simple biological

agents such as turtle ants, who regulate their behavior using local interactions rather than central control [67].

Repairing breaks requires overcoming three challenges. First, the ants must succeed in finding an

alternative path by exploring new edges that currently have no pheromone and avoiding dead-ends in the

network. One hypothesis for how this could be achieved is to first generate many candidate alternative

paths and then converge to one or a few of them over time — a process we call “pruning”. Such a strategy,

also employed by slime molds [60] and neural circuits [61], has been shown to help quickly discover new

paths in distributed settings, in which no agent is aware of the topology of the entire network. Second,

all ants must converge to the same new path in order to optimally coordinate resource transport. Turtle

ants travel in coherent trails that link nests and food sources [3]. After the vegetation supporting the trail is

ruptured, the ants explore outside the previous path, and eventually commit again to a single path. Such

convergence prevents ants from getting lost or separated from the rest of the colony. This is also an important

goal in computer routing networks, where convergence to a single path ensures in-order delivery of data

packets [68]. Third, it may be important to minimize the length of the new trail, which is also a standard

measure of efficiency used when evaluating transport network design. However, data from field studies [56,

3] suggest that turtle ant paths are often not the shortest globally. It appears that the second objective,

successful convergence, is more important than minimizing trail length, presumably because ants getting

lost or separated has a higher cost than the energy spent in walking [3]. A common strategy to increase

robustness to edge failures in a graph is to include loops in the path. Prior work [3] showed that loops do

form in turtle ant trail networks; however, loops tend to get pruned over time, perhaps reducing the number

of foragers needed to maintain the path.

The distributed algorithm used to maintain and repair trail networks must be robust across varying

planar network topologies. The forest canopy is highly complex and dynamic, and it is unlikely that turtle

ants use different algorithms to accommodate different network structures. Thus, we seek an algorithm that,

while likely not “optimal” for any single planar topology, performs well across different planar topologies. The

algorithm must also use very limited memory of individual agents, as ants are not capable of remembering

many of their steps along the graph structure.

Our work seeks to uncover a biologically plausible distributed algorithm that corresponds with field obser-

vations of turtle ant behavior in response to experimentally-induced edge breaks (Figure 1.1B) [3]. We

ask:

1. What model is most likely to explain how turtle ants at a node select which edge to traverse next?

2. How well can the algorithm repair broken trails in simulated breaks in synthetic and real-world network
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topologies when parameterized by the most biologically realistic parameter values?

(a) Does the algorithm consistently converge to a single consensus path?

(b) Does the algorithm find short paths?

(c) Does bi-directional search, using ants from both sides of the broken path concurrently, improve

the performance of the algorithm relative to uni-directional search?

(d) How does allowing an ant to avoid going back to the node it previously visited (backtracking),

improve algorithm performance relative to performance when ants are not prevented from back-

tracking?

(e) How does the algorithm perform in the presence of multiple breaks?

(f) Can we provide any theoretical insights into why certain model features are necessary for any

plausible turtle ant algorithm?

3. Can the same algorithm used to repair breaks also be used to keep the established routing backbone

intact in the absence of a break?

4. Do turtle ants form multiple alternative paths and then prune some of them over time, as also observed

in field studies?

A model that performs well on all of these criteria can be considered a plausible model of turtle ant

behavior. Our main contribution is to identify several plausible non-linear models; we also show why one

common linear model is likely implausible despite succeeding on some of the criteria listed above.

1.2. Related work

To our knowledge, this is the first computational analysis of trail networks of an arboreal ant species,

whose movements are constrained to a discrete graph structure rather than continuous space. Compared

to previous work, we attempt to solve the network repair problem using different constraints and fewer

assumptions about the computational abilities of individual ants.

1.2.1 Species-specific modeling of ant behavior.

Previous studies of ant trail networks have largely examined species that forage on a continuous 2D

surface [69], including Pharaoh’s ants [54], Argentine ants [19, 70, 71], leaf-cutter ants [72], army ants [73],

and red wood ants [74]. These species can define nodes and edges at any location on the surface, and form

16



trails using techniques such as random amplification [75, 76, 73], or using their own bodies to form living

bridges [77]. Experimental work on these species sometimes uses discrete mazes or Y-junctions to impose

a graph structure; however, these species have evolved to create graph structures in continuous space, not

to solve problems on a fixed graph structure, as turtle ants have evolved to do. Turtle ant movements are

entirely constrained by the vegetation in which they travel. They cannot form trails with nodes and edges at

arbitrary locations; instead, they can use only the nodes and edges that are available to them.

Further, to provide the simplest possible algorithm that is biologically realistic, we assume that turtle

ants use only one type of pheromone. There are more than 14,000 species of ants, and they differ in their

use of chemical cues. For example, Monomorium pharoensis uses several different trail pheromones [78,

79, 80, 81, 82]. There is, however, no evidence that turtle ants lay more than one type of trail pheromone.

1.2.2 Ant colony optimization.

Models of ant colony optimization (ACO), first proposed in 1991, loosely mimic ant behavior to

solve combinatorial optimization problems, such as the traveling salesman problem [34, 83, 37]. In ACO,

individual ants each use a heuristic to construct candidate solutions, and then use pheromone to lead other

ants towards higher quality solutions. Recent advances improve ACO through techniques such as local

search [84], cunning ants [36], and iterated ants [85]. ACO, however, provides simulated ants more compu-

tational power than turtle actually ants possess; in particular, ACO-simulated ants have sufficient memory

to remember, retrace, and reinforce entire paths or solutions, and they can choose how much pheromone

to lay in retrospect, based on the optimality of the solution.

Prior work inspired by ants provides solutions to graph search problems [86, 87], such as the Hamil-

tonian path problem [88] or the Ants Nearby Treasure Search (ANTS) problem. The latter investigates how

simulated ants collaboratively search the integer plane for a treasure source. These models afford the

simulated ants various computational abilities, including searching exhaustively around a fixed radius [89],

sending constant sized messages [90], or laying pheromone to mark an edge as explored [91]. Our work

involves a similar model of distributed computation, but our problem requires not only that the ants find an

alternative path to a nest (a “treasure”), but also that all the ants commit to using the same alternative path.

This requires a fundamentally different strategy from that required for just one ant to find a treasure.

1.2.3 Graph algorithms and reinforced random walks.

Common algorithms used to solve the general network search and repair problem, including Dijk-

stra’s algorithm, breadth-first search, depth-first search, and A* search [66], all require substantial commu-
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nication or memory complexity. For example, agents must maintain a large routing table, store and query a

list of all previously visited nodes, or pre-compute a topology-dependent heuristic to compute node-to-node

distances [92]. These abilities are all unlikely for turtle ants.

Distributed graph algorithms, in which nodes are treated as fixed agents capable of passing mes-

sages to neighbors, have also been proposed to find shortest paths in a graph [93, 94], to construct minimum

spanning trees [95, 96], and to approximate various NP-hard problems [97, 30]. In contrast, our work uses

a more restrictive model of distributed computation, where agents communicate only through pheromone

which does not have a specific targeted recipient.

Finally, the limited assumptions about the memory of turtle ants invite comparison to a Markov

process. Edge-reinforced random walks [98], first introduced by Diaconis and others [99, 100], proceed

as follows: an agent, or random walker, traverses a graph by choosing amongst adjacent edges with a

probability proportional to their edge weight; then the agent augments the weight (or pheromone) of each

edge chosen. Our model expands edge-reinforced random walks in two ways: first, we allow many agents

to walk the graph concurrently, and second, we decrease edge weights over time. Our work is similar to

previous models of the gliding behavior of myxobacteria [101] that consider synchronous, node (rather than

edge)-reinforced, random walks with decay. These models seek to determine when bacteria aggregate on

adjacent points or instead walk freely on the grid. By contrast, here we ask whether the random walkers

converge to a single consensus path between two points on the grid that are not necessarily adjacent.

1.3. Results

Our goals are to find an algorithm that can simultaneously explain the movement patterns of turtle

ants on a trail network and that can effectively solve the network repair problem. First, we describe a

computational framework for evaluating the collective response of turtle ants to edge ruptures. We evaluate

the response according to three objectives: the likelihood of finding an alternative path to repair the trail, how

well the ants converge to the same new trail, and the capacity to minimize the length of the trail. Second, we

derive multiple candidate distributed algorithms for network repair. We parameterize each algorithm using

data from field experiments to determine how the model would predict which edge a turtle ant would choose

to traverse next from a node, given only local information about adjacent edges and their edge weights.

Third, we analyze via simulation how our algorithms perform on different planar network topologies, including

simulated breaks on a European road transport network.
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1.3.1 A graph-theoretic framework for modeling network repair by turtle ants

We start with a weighted, undirected graph G = (V,E,W ), where V is the node set, E is the edge

set, and W are the edge weights, as well as two nest nodes u, v ∈ V , and a path P = (u, . . . , v) from u to v

with pheromone along each edge in P . Edges are undirected since turtle ants can walk in both directions

over edges. Edge weights correspond to the amount of pheromone on the edges, which can change over

time. We mimic a break in the path by removing some edge in P 1. The challenge for the ants is to find an

alternative path that reconnects u and v. The alternative path may build off the existing path, so that the

initial and final path may share some edges.

Communication among simulated ants is limited to chemical signals, analogous to pheromone, left

on edges traversed. Field observations are consistent with the assumption that, like Argentine ants [102],

turtle ants lay trail pheromone continuously as they walk [56, 3]. Though this has not been observed di-

rectly, we hypothesize that there are certain exceptional situations in which turtle ants discontinue laying

pheromone (Methods). Each ant at a node senses the pheromone levels on adjacent edges to inform its

next movement. Observations suggest that a turtle ant tends to keep moving in the same direction, indicat-

ing that an ant is able to avoid the previous node it visited. We thus assume that simulated ants have one

time-step of memory, used to avoid going back and forth along the same edge. As is characteristic of many

species of ants [103, 104, 2], simulated ants have no unique identifiers and can use only local information.

1.3.1.1 Parameters.

Our algorithm uses three biological parameters: qadd, qdecay, and qexplore. The first parameter (qadd)

determines how much pheromone is added when an ant traverses an edge. After each time step, each

edge (v1, v2) traversed increases its edge weight as:

w(v1, v2)← w(v1, v2) + qadd. (1.1)

Without loss of generality, we fix qadd = 1, representing a unit of pheromone that an ant deposits on each

edge traversed.

The second parameter (qdecay) specifies how much pheromone evaporates on each edge in each

time step due to natural decay. Wemodel pheromone decay as an exponential decrease in edgeweight [105,
1In principle, if a branch or vine is cracked but not removed, it could create two new dead end nodes. Here we focus on the scenario

in which a link is removed in its entirety.
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106]; thus qdecay ∈ (0, 1), and at each time step, for each edge (v1, v2), its weight is updated as:

w(v1, v2)← w(v1, v2)× (1− qdecay). (1.2)

Larger values of qdecay correspond to more rapid decay of pheromone on the edge.

The third parameter (qexplore) specifies the probability that an ant takes an “explore step”. The defi-

nition of an “explore step” is algorithm-specific (see below), but intuitively, it involves choosing an edge with

relatively less or no pheromone. Such deviation is clearly required by any network repair algorithm, since

after the routing backbone is ruptured, edges not part of the existing path must be traversed to repair the

break. Field observations show that even in the absence of a break, turtle ants explore edges off the main

trail. This allows them to discover new food sources and incorporate them into the trail network [3].

1.3.1.2 Performance metrics.

After T time steps, we evaluate the outcome of the algorithm using the following measures (aver-

aged over 50 repeat simulations):

1. Success rate: The probability that the simulated ants succeeded in forming a new path from u to v that

does not use the broken edge. In this new path, ants are not required to traverse edges of relatively

low weight (Methods). Higher values are better; for example, a success rate of 70% means that in

70% of the simulations, the ants successfully formed an alternative path.

2. Path entropy: An information-theoretic measure of how well the ants converge to a single consensus

path, rather than creating multiple, potentially overlapping, u→ v paths with pheromone. Lower values

are better, indicating that subsequent ants using the same algorithm on the resulting network will all

follow a common path, rather than dispersing along many different paths. This measure is computed

only in the simulations in which an alternative path was successfully found. Field observations show

that turtle ants consistently converge to a consensus path, and loops in the network are often pruned

away over time [3]. This reduces the numbers of lost ants and the numbers of ants traveling in circles.

3. Path length: The length of the new path. Although turtle ants do not always find the globally shortest

path [3], we include this measure because it is commonly used to evaluate routing algorithms. Lower

values are better, indicating shorter paths. This measure is computed only in the simulations in which

an alternative path was successfully found.
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1.3.1.3 A model of computation for individual ants.

We assume that all ants are identical and have the following computational abilities:

• Each ant can avoid the node it immediately previously visited. It cannot, however, remember its entire

path from the nest up to its current point. The ant may also keep track of a binary state variable that

determines whether it is combing back from a dead end and should discontinue laying pheromone.

• In field observations, ants appear to pause at nodes and inspect more than one edge before choosing

an edge to take [3]. Thus, each ant can access all adjacent edge weights to decide which node to visit

next. To choose its next edge, we allow ants to perform any Turing-computable computation, although

we show that a simple, albeit non-linear, function will suffice.

See Methods for full technical details of the model and performance metrics.

1.3.2 Candidate distributed algorithms

Below we introduce several biologically plausible algorithms that attempt to describe how a turtle

ant at a node s chooses which edge to traverse next among possible neighboring edges t1, t2, ...tn. These

algorithms build upon previous linear and non-linear models used to analyze ant trail formation in other

species, such as Argentine ants [107, 108, 109] and pharaoh ants [110]. Let w(s, ti) be the current weight

on edge (s, ti), and let uniform() be a random value drawn uniformly from [0, 1].

In the Weighted random walk (Algorithm 1), each ant chooses the next edge to traverse with prob-

ability proportional to the amount of pheromone on that edge: the more pheromone on an edge, the more

likely an ant is to traverse that edge. However, with probability qexplore, the ant takes an edge that has zero

pheromone.

Algorithm 1Weighted random walk
1: X ← {ti : w(s, ti) > 0} # Explored edges
2: Y ← {ti : w(s, ti) = 0} # Unexplored edges
3: if uniform() < qexplore then
4: return ti ∈ Y with probability 1/|Y |
5: else
6: return ti ∈ X with probability w(s, ti)/

∑
j∈X w(s, tj)

7: end if
Note: The algorithm excludes the previously visited node from the sets of candidate edges, unless it is at
a dead end. If all neighboring edges have weight 0, the ant chooses a zero-weight edge with probability
1 rather than probability qexplore. If none of the neighboring edges have weight 0, then the ant chooses an
edge with nonzero-weight with probability 1 rather than probability 1− qexplore.

In the RankEdge random walk (Algorithm 2), with probability 1 − qexplore, the ant chooses an edge
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with the highest weight (ties are broken at random). With probability qexplore, it bypasses the highest weighted

edges and considers edges with the second highest weight. With probability qexplore(1− qexplore), it chooses

an edge with the second highest weight. With probability q2explore, it bypasses both the highest and second

highest weighted edges and considers edges with the third highest weight, and so on.

Algorithm 2 RankEdge random walk
1: W ← [w1, w2, . . . , wk] # Sorted unique edge weights, in decreasing order
2: for i = 1 . . . k do
3: X ← {t : w(s, t) = W [i]}
4: if uniform() < (1− qexplore) then
5: return ti ∈ X with probability 1/|X|
6: end if
7: end for

Note: The algorithm excludes the previously visited node from the set of candidate edges. If all neighboring
edges are tied for the highest weight, then a maximally-weighted edge is chosen with probability 1 rather
than probability 1 − qexplore. If an ant keeps exploring until it gets to the lowest weight, it takes one of the
edges tied for the lowest weight with probability 1 rather than probability 1− qexplore.

Each algorithm contains additional details inspired by field observations, including a queueing sys-

tem so ants traverse edges one at a time, the ability to traverse and return from an edge on an explore step

in one time-step, and the ability to discontinue laying pheromone on the way back from a dead-end. See

Methods for full details.

1.3.2.1 Comparison to additional non-linear algorithms

The RankEdge algorithm requires an ant arriving at a junction to rank-order all outgoing edges by

weight before making a decision. Thus, we test RankEdge against five other, arguably simpler algorithms.

We describe these algorithms here, and present results on all of them in tables in the main text. We also

compared to a null model, called theUnweighted randomwalk. The null model uses no parameters; instead,

the ants ignore edge weights and choose amongst candidate edges with equal probability. Overall, we find

that RankEdge does the best job of simultaneously explaining field data and performing well in simulations,

and so we primarily focus on the RankEdge algorithm in our figures.

• MaxEdgeA: With probability 1− qexplore, choose randomly among edges tied for the highest weight.

With probability qexplore, choose randomly among all other edges (i.e., excluding the edge with the

highest weight). This algorithm only needs to distinguish between edges with the highest weight and

edges with any other weight.

• MaxEdgeB: With probability 1 − qexplore, choose randomly among edges tied for the highest weight.
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With probability qexplore, choose randomly among all edges (including the edge with the highest weight).

This algorithm only needs to distinguish between edges with the highest weight and edges with any

other weight.

• MaxEdgeC: With probability 1− qexplore, choose randomly among edges tied for the highest or second

highest weight. With probability qexplore, choose randomly among edges with less than the second

highest weight. This algorithm only needs distinguish between edges with the highest or second

highest weight and edges with any other weight.

• MaxWeighted: With probability 1− qexplore, choose randomly among edges tied for the highest weight.

With probability qexplore, choose randomly among all edges with probability proportional to the weight

of the edge. This is a hybrid algorithm, using MaxEdgeA when not exploring, and using Weighted

otherwise.

• Deneubourg [111]: From node u, choose edge (u, v) with probability:

(a+ w(u, v))
1/qexplore∑

(u,v′)∈E(G)(a+ w(u, v′))
1/qexplore

,

where we set a = 1 to constrain this model to two parameters (as in the other models). Low values of

qexplore more strongly biases towards picking the highest weighted edge, and vice-versa. We find that

the maximum likelihood value of qexplore is 0.78 < 1, meaning the exponent is strictly greater than 1.

Thus, the probability an edge gets chosen is not a linear function of the weight. Note that under this

model, as qexplore goes to 0, the probability of taking the highest weighted edge goes to 1.

1.3.2.2 Summary of conclusions.

Overall, we find that non-linear models perform the best at simultaneously explaining field obser-

vations and providing a mechanism by which turtle ants could solve the network repair problem. While

the linear (Weighted) algorithm does perform well at explaining some aspects of field observations, and it

repairs breaks with high probability, it also produces a very high path entropy, with poor convergence to

a consensus path. This departs strongly from field observations [3] that show that when repairing broken

paths, the ants quickly converge to a single path.

In particular, we find that: (A) RankEdge outperforms all other non-linear algorithms, except for

MaxEdgeA, in the likelihood of explaining observed edge choices by turtle ants (Table 1.1). The log-

likelihoods of RankEdge and MaxEdgeA were nearly identical. (B) When parameterized by field data,

RankEdge outperforms all other non-linear algorithms in success rate (Table 1.2); and (C) RankEdge is
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Table 1.1: Maximum likelihood estimates for each algorithm. For each algorithm, we show the values
of qexplore and qdecay that maximize the likelihood of producing the observed choices made by turtle ants in
the field. Standard deviation is computed across 13 junctions, each corresponding to field observations of
one junction on a given day. All models are significantly more likely to explain the data than the null model
(Unweighted).

Algorithm qexplore qdecay log-likelihood

Unweighted N/A N/A −744.25
Weighted 0.05± 0.06 0.01± 0.10 −345.05
RankEdge 0.20± 0.04 0.02± 0.08 −405.42
MaxEdgeA 0.20± 0.04 0.02± 0.08 −402.63
MaxEdgeB 0.42± 0.04 0.01± 0.09 −424.61
MaxEdgeC 0.23± 0.01 0.02± 0.09 −586.87
MaxWeighted 0.22± 0.01 0.01± 0.09 −568.70
Deneubourg 0.78± 0.10 0.01± 0.03 −518.18

Table 1.2: Success rates for each algorithm. For each algorithm, we show the success rate on each
simulated network. The last column summarizes the robustness of each method across all networks. Of
the non-linear algorithms, RankEdge performs the best.

Algorithm Minimal Simple Medium Full Spanning Grid Europe Robustness

Unweighted 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Weighted 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RankEdge 1.00 0.98 0.84 0.70 0.54 0.70 0.78
MaxEdgeA 1.00 0.78 0.74 0.48 0.36 0.62 0.63
MaxEdgeB 0.76 0.60 0.64 0.64 0.44 0.70 0.62
MaxEdgeC 1.00 1.00 0.84 0.48 0.44 0.48 0.66
MaxWeighted 1.00 0.88 0.72 0.63 0.38 0.68 0.68
Deneubourg 1.00 1.00 0.94 0.44 0.67 0.52 0.72

equivalent to all other non-linear algorithms in path entropy (Table 1.3). Compared to the linear Weighted

algorithm, RankEdge has a lower likelihood of explaining the observed edge choices and a lower success

rate. However, RankEdge performs much better in path entropy, path length, and maintaining the trail in

the absence of a break. We emphasize that the strong success rate of Weighted is because pheromone is

left essentially on every edge in the graph. This guarantees high success but very poor convergence to a

single path. Field experiments show that turtle ants converge strongly to a single path.

1.3.3 Q1. Field observations to determine the best algorithm and parameter values

We first determined what parameter values best allow each algorithm to match the data from field

observations. We then used these parameter values to test algorithm performance for the network repair

problem.

The performance of each candidate algorithm is sensitive to the values chosen for the two free

parameters, qexplore and qdecay (as previously mentioned, we set qadd = 1). For example, with low values
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Table 1.3: Path entropy for each algorithm. For each algorithm, we show the path entropy on each
simulated network. Lower values indicate convergence to fewer paths, and 0 indicates convergence to a
single unique path. All non-linear algorithms achieve the optimal path entropy. The standard deviation of
the entropy for all non-linear models is 0. We do not report an interval for Unweighted because it does not
depend on pheromone amount and thus has the same limiting behavior in all cases.

Algorithm Minimal Simple Medium Full Spanning Grid

Unweighted 0.00 0.69 1.79 13.75 7.24
Weighted 0.00± 0.00 0.23± 0.25 1.52± 0.20 12.38± 0.22 5.94± 0.15
RankEdge 0.00 0.00 0.00 0.00 0.00
MaxEdgeA 0.00 0.00 0.00 0.00 0.00
MaxEdgeB 0.00 0.00 0.00 0.00 0.00
MaxEdgeC 0.00 0.00 0.00 0.00 0.00
MaxWeighted 0.00 0.00 0.00 0.00 0.00
Deneubourg 0.00 0.00 0.00 0.00 0.00

of qexplore, the ants may take a long time to explore enough new edges to find an alternative path; on the

other hand, for high values of qexplore, the ants will scatter throughout the network and may not converge to

a single path. Similarly, for high values of qdecay (pheromone decays rapidly), it may be difficult to build and

reinforce a single path; for low values of qdecay, it may be hard for the colony to eliminate unnecessary edges

and commit to one path. These two parameters also affect each other; for example, the higher the decay

rate, the fewer edges with pheromone, and thus the more possible edges to explore.

We used data from observations made in the field to evaluate the match between the choices of

edgesmade by turtle ants and the choices predicted by a candidate algorithm (with parameters qexplore, qdecay).

Observations were made at La Estacion Biologica de Chamela in Jalisco, Mexico [56, 3]. Ants were ob-

served traversing a junction (node) along a foraging trail. We recorded the time at which an ant moved to or

from that junction node, and the edge it chose to traverse (Figure 1.2A–B). Observations were made of six

different colonies, with an average of 2.16 junctions per colony, over three days in June 2015 and one day

in June 2016. We observed 13 different junctions for time periods ranging from 7 to 24 minutes (mean of

12.3 minutes per observation at a given colony on one day), for a total of 773 edge choices made by turtle

ants.

Maximum likelihood estimation: We determined which algorithm and parameter values best ex-

plained the observed edge choices made by turtle ants using maximum likelihood estimation (MLE). The

data were used to determine the likelihood that a given algorithm, with a given pair of parameter values,

would have produced the observed set of edge choices. Figure 1.2A–B shows an example likelihood cal-

culation, and Figure 1.2C–D illustrates the results of the MLE for each algorithm over all pairs of parameter

values.

Overall, for RankEdge, the maximum likelihood parameter values that best explained the observed
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Figure 1.2: Maximum likelihood computation. A–B) Example node junction and edge choices for turtle
ants. All ants arrive at node 1 from a different node that is not shown. In the example, we assume pheromone
has been deposited at previous time-points, and we now compute the likelihood of the next ant choice. Under
the RankEdge algorithm, the likelihood of choosing edges 1→ 3 or 1→ 2 is (1− qexplore)(1/2); the likelihood
of edge 1→ 4 is qexplore(1−qexplore); and the likelihood of 1→ 5 is q2explore. Under theWeighted algorithm, the
likelihood of choosing edge 1→ 5 is qexplore; the likelihood of edge 1→ 4 is (1− qexplore)(1/(1 + 2 + 2)); and
the likelihood of edges 1 → 2 or 1 → 3 is (1 − qexplore)(2/(1 + 2 + 2). Under the Unweighted algorithm, the
edge weights are disregarded, and the likelihood of taking any one of the four edges is (1/4). C–D) For each
combination of qexplore (x-axis) and qdecay (y-axis) values, we determined the pair’s likelihood of producing
the choices observed in turtle ants. Each heatmap shows the likelihood for each algorithm with a zoom-in
below around the highest likelihood region. The optimal parameter values for each algorithm, depicted in
white, are shown in Table 1.1.

turtle ant behavior were: qexplore = 0.20, and qdecay = 0.02 (Table 1.1). ForWeighted, the maximum likelihood

parameter values were qexplore = 0.05 and qdecay = 0.01. Both candidate algorithms were more likely to

explain the data than the null model (Table 1.1).

1.3.3.1 Variance of maximum likelihood estimations

The maximum likelihood heatmap (Figure 1.2) showed the cumulative likelihoods over all 13 turtle

ant junctions. Here we confirm that the likelihood estimation produced consistent results in each of the 13

junctions.

We found the values for qexplore and qdecay that maximized the likelihood of producing the edge

choices in each of the 13 junctions individually (Figure 1.3). We varied qexplore ∈ [0.10, 0.40] and qdecay ∈
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Figure 1.3: Variance of maximum likelihood estimation. Maximum likelihood analysis of the RankEdge
algorithm for qdecay (left) and qexplore (right).

[0.01, 0.30] in increments of 0.01 (the same range used for the maximum likelihood analysis in Figure 1.2),

and recorded the maximum likelihood parameters for each junction. We then plotted a histogram of the

distribution of the maximum likelihood parameters across the different junctions. Each maximum likelihood

estimate is weighted by sample size; i.e., its contribution is weighted in proportion to the number of edge

choices in that junction.

We observe that the distribution of most likely parameter values is tight, especially the values for

qexplore, for which over 60% of the (weighted) junctions had nearly the same qexplore value (Figure 1.3). There

is some variation in qdecay, possibly due to differences among days in environmental conditions that could

affect pheromone evaporation rates. Overall, these results suggest that similar algorithm parameters apply

for different colonies and days.

1.3.4 Q2. Algorithm performance on synthetic and real-world planar networks

Our goal here is to test how well each algorithm solves the network repair problem on simulated

and real-world networks. We were particularly interested in how well each algorithm performed when its

parameters were set to the maximum likelihood values derived from observations of turtle ants. Our main

result is that the maximum likelihood parameters for the RankEdge performed well in simulations for network

repair across six networks (Figure 1.4; the black rectangle in both panels shows that the parameter values

that best explain the turtle ants’ behavior also perform best for solving the network repair problem.) The

latter result is substantiated below.
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A) Aggregate success rate B) Maximum likelihood estimation

Figure 1.4: The maximum likelihood parameters closely match the best simulation parameters. A)
The color of each square in the heatmap corresponds to the robustness (Methods) of the success rates
for the RankEdge algorithm for each combination of qexplore (x-axis) and qdecay (y-axis) values. Results
are aggregated over the six simulated and real-world networks presented in Figures 1.5 and 1.6. B) The
maximum likelihood parameter estimates forRankEdge from observations of turtle ants. The black rectangle
in both panels shows that the parameter values that best explain the turtle ants’ behavior also perform best
for solving the network repair problem.

1.3.4.1 Simulation setup

For all simulations, we ran each algorithm for T = 1000 steps using N = 100 ants, and repeated

each simulation 50 times. To initialize each simulation, we placed each of the N ants at a random node

in the original path. This means that at the start of the simulation there were likely ants at nodes on both

sides of the rupture in the path. No ants were placed at nodes not part of the original path. Each ant was

randomly assigned to walk in search of one of the two nests. All edges that were part of the initial path

were initialized with 10 units of pheromone. All other edges were initialized to 0 units of pheromone. When

an ant reached its destination nest, it attempted to return to the other nest, and repeated this, going back

and forth between nests, for T time-steps. The ants walk synchronously for T time-steps; this is a common

assumption in distributed computing problems.

1.3.4.2 Simulation Networks

Our first performance metric, called the success rate, measures how well the ants succeed in finding

an alternative path to repair the break. We simulated breaks under six planar network structures, which

have an increasingly complex topology with varying numbers of possible paths. In each evaluation below

(Figure 1.5), we show three panels: the initial network with a break, the final network at the end of the

simulation, which is generated using the MLE parameter values, and a heatmap showing the success rate
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for pairs of parameter values (qexplore, qdecay) close to the MLE range. In each synthetic network, a only single

link is broken (shown as the ‘X’ mark in Figure 1.5); in section 1.3.4.7, we describe cases where multiple

links are broken.

We analyzed all algorithms but focus on results for RankEdge becauseWeighted rarely converged

onto a single path, thus it did not satisfy our second performance metric. It also did not maintain trails in the

absence of a break. These results are described in detail later. Also, see section 1.3.2.1 and Table 1.2 for

analysis of the additional non-linear algorithms.

Minimal graph (Figure 1.5A): Here we find that RankEdge can solve a basic repair problem in a

minimal working example, in which the break causes the existing path to lead to a dead end that should be

avoided in favor of a single alternative path to the nest. To favor the alternative path, the simulated ants must

largely eliminate the pheromone on the edge leading to the dead end, a process which we call ‘pruning’.

To favor the alternative path instead of the existing path, the ants should put more pheromone on the edge

leading upwards to the alternative route, even though this edge initially had no pheromone.

We find that the RankEdge algorithm succeeds in this task 100% of the time, as long as the ants

do not leave pheromone on the way back returning from the dead-end (Methods and Q4).

Simple graph (Figure 1.5B): Here we increased the complexity of the graph to offer two alternative

paths, instead of one in the Minimal graph. We found that RankEdge not only prunes the dead-end, but it

can find and commit to one of the two alternatives with a 98% success rate.

Medium graph (Figure 1.5C): Here we further increased the complexity of the Minimal graph to

offer six alternative paths and found that RankEdge not only prunes the dead-end, but can find and commit

to one of the six alternatives with a 84% success rate.

Full grid (Figure 1.5D): The Full grid presents a different computational challenge: there is no

dead-end to prune and the shortest alternative path requires only 3 additional edges. However, the total

number of possible new paths is extremely large, which makes it difficult to find and commit to a single path.

The Full grid is also a standard benchmark used in the ANTS problem (Related work), in which ants search

the integer plane [89, 90, 91].

We found that the highest success rate (70%) occurred for low values of qdecay, which closely

matches the observed best decay value estimated using maximum likelihood. This highlights an inher-

ent trade-off in the turtle ant algorithm. Low decay rates help preserve the initial path and bias the turtle

ants toward finding an alternative route that re-uses as much of the previous path as possible; that is, with

low decay rates, repair starts as close to the break as possible. However, low decay rates also limit the

capacity to search for other paths that may be shorter even though they re-use less of the previous path.

An alternative would be to use higher values of qexplore to search for other paths that do not re-use the initial
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B) Simple graph
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Figure 1.5: Success rates for each network. A–E) For each network we show the initial graph (left), an
example of the final graph after running the RankEdge algorithm using the maximum likelihood parameters
(middle), and the algorithm’s success rate for each parameter combination (right). In each panel, black dots
indicate nodes in the network, and solid lines indicate edges that may be traversed. If two adjacent nodes
are not connected by an edge, there is a space between them. In the initial graphs, the ‘X’ marks the edge
that is broken. The x-axis of the heatmap (right column) shows qexplore, and the y-axis shows qdecay under
the range close to the MLE parameters. Darker shades of red are indicate success rates closer to 1, and
thus are better.

path, but this would make it more difficult for the ants to converge to a single new path.

Spanning grid (Figure 1.5E): In contrast to the Full grid, the Spanning grid is sparser and requires
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that the ants go back at least one node from the break to find an alternative path.

We found that the maximum likelihood parameters produced a moderate success rate (54%). As

above, the highest success rate occurred for low values of qdecay and moderate values of qexplore. These

values achieve a good trade-off between searching sufficiently far from the break to find an alternative path,

and largely preserving the previous path. The performance on the Spanning grid demonstrates that the

algorithm is flexible enough to search locally around a break point for new paths, while still maintaining most

of the old path.

The results from the Full grid and the Spanning grid together suggest that the algorithm performs

best when it preserves as much of the previous path as possible, even if it can not re-use all of the original

path. This is consistent with field observations that showed that turtle ants sought alternative paths in a

“greedy” manner, by going back up to 1 or 2 nodes from the break point, even though going back more

nodes may have resulted in a path with fewer nodes overall [3].

European road transportation network (Figure 1.6): To demonstrate the utility of this algorithm in

a real-world scenario, we applied the RankEdge algorithm to repair networks in a human-designed transport

network. We downloaded the network depicting the major roads (edges) connecting intersections (nodes) in

the international E-Road in Europe [112] (Methods). We removed an edge from an existing path between two

nodes and ran the RankEdge algorithm to repair the simulated closure. The RankEdge algorithm achieved

a success rate of 70%, indicating that the turtle ant algorithm can also repair breaks in real-world topologies.

This shows how distributed solutions may be useful for new application domains, such as for swarm robotics

or molecular robots [113, 12, 114, 115] in remote environments, when centralized or global positioning

systems may not be as effective.

Performance on additional random graphs: Our analysis focused on planar graphs, since the

turtle ant environment is a physical network. Here, we further test performance on two additional, well-

studied random graph models: Watts-Strogatz [116] small-world networks (n = 121, k = 4, p = 0.05), and

Erdos-Renyi (ER) random networks (n = 121, p = 4/120). The number of nodes n is equal to the number of

nodes in the Full grid, and the other parameters were selected such that each node has an expected degree

of 4 (also like the Full grid). We find that RankEdge has a success rate of 54% on ER networks and 46%

on WS networks (geometric mean of 0.498), and a path entropy of 0 for both networks. By comparison,

the Deneubourg algorithm achieved lower success rates of 46% on ER networks and 28% on WS networks

(geometric mean of 0.359), also with path entropy of 0. Weighted, as expected, achieved 100% success

but showed a very high path entropy: 6.69 on ER networks and 5.63 on WS networks.

The turtle ant algorithm evolved to operate on networks with physical, geometric constraints, whereas

the ER and WS random network models are not constrained as such. For this reason we did not emphasize
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A) European roads B) Success rate

X

Original route Alternative path

Figure 1.6: Repairing road closures in the Europe road graph. Analysis of how well the turtle ant algo-
rithm translates to repair simulated breaks in a real-world transport network. A) An example of a path in the
European E-road network connecting Munich to Berlin, Germany. The roads and junctions form a graph.
On the left, the black ‘X’ shows a road that has been broken or closed along the path. On the right, we show
an alternative path that avoids the broken road. B) The success rate of the turtle ant algorithm (RankEdge)
applied to this network. Map data: Google, DigitalGlobe.

performance on these random networks. Further work is needed to investigate the theoretical relationship

between the performance of RankEdge and network topology, as defined by properties such as degree

distribution, clustering coefficient, or distribution of path lengths.

1.3.4.3 Q2a. Converging onto a single consensus path (Table 1.3).

Our second performancemetric, called path entropy, measures howwell foragers commit to a single

alternative path.

We find that the RankEdge algorithm consistently achieves a path entropy near 0, indicating that on

the final network all ants follow the same path when not taking explore steps (Table 1.3). This is particularly

challenging for the Full and Spanning grids because both contain a large number of possible paths, and thus

a large possible path entropy if the simulated ants exploit many paths. Thus, when the algorithm succeeds

in repairing the path, RankEdge satisfies our second performance criterion.

More generally, one advantage of non-linear algorithms such as RankEdge is that all simulated

ants, by simply following the maximal edge (the adjacent edge with the highest pheromone), can travel from

one nest to the other using the same path, thereby achieving a path entropy of 0. On the other hand, linear

algorithms such as Weighted do succeed in finding a path; however, Weighted is unable to commit to only

one path, and thus has very high path entropy (Figure 1.7).
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Figure 1.7: Poor path entropy forWeighted. The initial (left) and final (right) networks for the (A) Full grid
and (B) Spanning grid. In both cases, the MLE parameter values (qexplore = 0.05, qdecay = 0.01) forWeighted
did not find a low path entropy solution.

1.3.4.4 Q2b. Finding short paths (Table 1.4).

Our third performance metric measures the path length of the final trail network. We found that

RankEdge consistently finds paths of lengths that are close to, though slightly larger than, the globally

shortest path lengths. For every network, we compared the average path lengths of RankEdge versus every

other algorithm usingWelch’s unpaired T-test. RankEdge finds significantly shorter paths thanWeighted and

Unweighted on the Full grid, Spanning grid, and European roads (p < 0.05); RankEdge is not significantly

different from the other non-linear algorithms (Table 1.4). The improved performance over Unweighted

demonstrates the value of using pheromone to solve the network repair problem collectively, instead of

using independent search.
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Table 1.4: Average path length for each algorithm. For each algorithm, we show the average path length
of the final graph, measured as the number of nodes in the path. RankEdge performed much better than
the null model (Unweighted) and close to the globally shortest path length (Optimal).

Algorithm Minimal Simple Medium Full Grid Spanning Grid

Unweighted 12.00± 0.00 12.90± 1.00 13.16± 3.00 26.04± 6.56 20.05± 7.24
Weighted 12.00± 0.00 12.97± 0.85 13.04± 0.64 18.36± 0.18 16.93± 0.24
RankEdge 12.00± 0.00 12.98± 1.01 10.95± 1.01 13.06± 0.34 14.56± 3.97
MaxEdgeA 12.00± 0.00 12.87± 1.00 11.29± 0.97 13.17± 0.56 15.56± 4.38
MaxEdgeB 12.00± 0.00 13.30± 0.96 10.77± 0.99 13.06± 0.35 15.09± 4.07
MaxEdgeC 12.00± 0.00 13.02± 1.01 11.00± 1.01 13.16± 0.56 15.45± 3.54
MaxWeighted 12.00± 0.00 12.87± 0.99 10.89± 1.03 13.06± 0.58 14.46± 3.07
Deneubourg 12.00± 0.00 13.16± 1.00 11.06± 1.30 14.18± 3.47 13.94± 2.51

Optimal 12.00 12.00 10.00 13.00 13.00

1.3.4.5 Q2c. The power of bi-directional search.

We find that a bi-directional search, in which simulated ants attempt to create an alternative path

concurrently from both sides of the break, allows the algorithm to perform significantly better than a uni-

directional search using ants from only one side of the break. We tested this on the Full grid, and found

that for the MLE parameter values for RankEdge, the success rate was on average 70% for a bi-directional

search versus 14% for uni-directional search.

One might predict that uni-directional search would perform as well as the bi-directional search,

while simply taking longer. However, we found this not to be true: using a bi-directional search means that

once ants from side A of the break reach side B of the break, the rest of their search is directed by the

pheromone trail laid by ants that started on side B. In the uni-directional search, even if ants from side A

reach side B, they must still find a path from scratch connecting the dead end on side B to the nest on side B.

Although uni-directional search has rarely been observed to occur in turtle ant networks, we tested it here to

compare it with bi-directional search, which is often used to improve the performance of search algorithms.

To test the performance of an algorithm using uni-directional rather than bi-directional search, we

performed simulations on the Full grid using RankEdge in which all ants were initialized to be on one side of

the rupture. Figure 1.8 shows a significant loss in the ability to repair the network when using uni-directional

search.

1.3.4.6 Q2d. The power of avoiding backtracking

Our simulated ants are able to avoid revisiting the previously visited node, except when an ant

reaches a nest and turns around to go back, or when it encounters a dead end.

Here we present results from simulations using the RankEdge algorithm with maximum likelihood
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A) Initial B) Final C) Success rate

Figure 1.8: Uni-directional vs bi-directional search. A) Initial network. Simulations start with all ants
placed at a random node on the left of the rupture. B) Final network. The pheromone on the right side
quickly decays, making it much more difficult to build off the left path to repair the rupture. C) The success
rate is significantly lower with uni-directional search than bi-directional search.

A) Initial B) Final C) Success rate

Figure 1.9: Analysis of backtracking. A) Initial network. B) Final network, showing that when ants are
allowed to backtrack, few edges are repeatedly reinforced. C) The success rate is significantly lower when
ants are allowed to backtrack.

parameter values, in which the ants are not prevented from using the previously visited node; i.e., they are

allowed to backtrack. We find that providing simulated ants the ability to avoid backtracking, i.e., visiting

the same node visited in the previous time-step (Methods) allows for a significant improvement in algorithm

performance. In contrast, ants that are not given this ability could keep going back and forth along the same

edge.

In particular, ants that used the RankEdge algorithm and avoided backtracking produced a success

rate of 70% on the Full grid, compared to 0% when an ant was not prevented from potentially returning to

the previous node it visited (Figure 1.9). Thus, providing ants with a basic node-to-node sense of direction

led to a significant improvement in performance.
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Figure 1.10: Performance when multiple links are broken.

1.3.4.7 Q2e. Performance when multiple links are broken

In field experiments and in the simulations reported above, we ruptured only one link in the path. In

the field, edges or stems are broken occasionally by the wind or an animal moving through the vegetation.

It is extremely unlikely for two or more such events to occur concurrently in the same path, and the repair

process for the repair of a single link is quite rapid [3]. Nonetheless, here we test performance of the

algorithm with multiple broken links.

Specifically, we tested RankEdge on the Full grid with different numbers of broken links; starting

from one edge ruptured to the entire path missing (Figure 1.10A). We achieved success rates of 70%, 42%,

and 24%, 24%, and 0%, respectively (Figure 1.10B). The performance of the algorithm decreases the more

links are broken. These results, as well as field observations, suggest that if many links are broken (e.g.,

the last panel in Figure 1.10A), a different search strategy is used. This strategy may be similar to the one

used when turtle ants initially establish a new path connecting nests; this problem requires further study.

1.3.4.8 Q2f. Critical features for the success of a plausible algorithm.

Here we provide a probabilistic argument for why the RankEdge algorithm prunes a dead-end sig-

nificantly faster if ants do not lay pheromone on the way back from a dead-end. We do this by providing a

coarse upper bound on the average time to prune in the two scenarios: when ants do not lay pheromone

on the way back from a dead-end versus when they do lay pheromone on the way back.
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Consider the Minimal graph, and the junction on the left where the ant must choose between the

edge that leads to the nest on the right (the ‘good edge’), and the edge that leads to the dead-end (the ‘bad

edge’). The RankEdge algorithm is biased towards selecting the highest weighted edge; therefore, for the

ants to find the alternative path, there must be more pheromone on the good edge than on the bad edge.

We make the following assumptions in the course of this section:

• An ant makes a choice at the junction. If it takes the good edge, it will go over the edge and back in one

step (Methods), or it will take the bad edge, and eventually come back to the junction after returning

from the dead end. It will not lay pheromone on the way back from the dead-end.

– No backtracking means that the ant might walk all the way to the dead end before turning around

and discontinuing pheromone deposition. It will still lay only one unit of pheromone on the edge

at the junction that leads to the dead end trail.

• We split time into intervals of K steps. For simplicity, we ignore decay in the current interval, consider

choices with decay in the immediately previous interval, and ignore all choices in any prior intervals

assuming all pheromone previously deposited has decayed so has no significant impact on the current

weights.

• For simplicity, we assume an infinite number of ants; thus, after an ant chooses an edge and lays

pheromone, it is put at the end of an infinite queue at node 1. This allows us to ignore the case in

which an ant chooses the bad edge, and later is forced to choose the good edge due to the rule against

backtracking. While this is obviously not how the simulations actually work, this simplifying assumption

allows us to derive the intuition for how the algorithm works without getting bogged down in technical

details. The RankEdge’s 100% success on the minimal network shows that this assumption does

not cause an overbearing discrepancy between our theoretical analysis and the true nature of the

simulations.

Informally, consider an ant at the junction that chooses between the good or the bad edge. The

choice the ant makes at this junction determines whether it will reach the nest on the right side of the break

or reach the dead-end. Thus, it suffices to consider a simplified version of the Minimal graph by considering

only the choice made by the ant at that junction before the good and the bad edge. We seek to determine

the probability and expected time needed for the ants to place more pheromone on the good edge than the

bad edge.

As described in Methods, if an ant takes an “explore step” and chooses the lower weighted edge, it

will deposit two units of pheromone on that edge. If an ant chooses the good edge on a non-explore step,

37



it will leave one unit of pheromone on the way to the nest and one unit on the way back, so that edge will

be reinforced with 2 units of pheromone. If an ant chooses the bad edge on a non-explore step, it will not

deposit pheromone on the way back from the dead-end, so that edge will receive only 1 unit of pheromone.

We will consider the case where the bad edge initially has more weight than the good edge, and we want

to determine how much time it takes before the good edge has more weight than the bad edge. Once this

happens, the ants will have formed a maximal path between the two nests.

Formally, we have a graph with nodes V = {1, 2, 3} and edges E = {(1, 2), (1, 3)}. Edge (1, 2)

represents the bad edge (with initially higher pheromone), and (1, 3) is the good edge. Additionally, let

Wt(u, v) to be the weight of edge (u, v) at time t. At each time-step, an ant at node 1must choose between the

two edges. The ants follow the RankEdge algorithm, so they take the higher weighted edge with probability

1−qexplore and the lower weighted edge with probability qexplore. If the ant chooses edge (1, 2) then it augments

the weight of that edge by 1:

Wt+1(1, 2)←Wt(1, 2) + 1.

If it chooses edge (1, 3) then it augments that edge weight by 2:

Wt+1(1, 3)←Wt(1, 3) + 2.

If the two edges have equal weight then it chooses each of the two with equal probability, but for now we

will ignore that case.

At the end of each time-step each edge weight decays exponentially by a rate, qdecay:

Wt+1(1, 2)←Wt+1(1, 2)× (1− qdecay)

and

Wt+1(1, 3)←Wt+1(1, 3)× (1− qdecay).

For example, supposeWt(1, 2) = 10 andWt(1, 3) = 5. With probability qexplore, the ant takes edge (1, 3) and

with probability 1− qexplore it takes edge (1, 2). If it takes (1, 3) then

Wt+1(1, 3)←Wt(1, 3) + 2 = 7,

and if it takes edge (1, 2) then

Wt+1(1, 2)←Wt(1, 2) + 1 = 11.
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For example, suppose the ant takes edge (1, 3). Then,

Wt+1(1, 2)← 10, Wt+1(1, 3)← 7.

At the end of the time-step, both edges decay by qdecay:

Wt+1(1, 2)←Wt+1(1, 2)× (1− qdecay) = 10× (1− qdecay)

and

Wt+1(1, 3)←Wt+1(1, 3)× (1− qdecay) = 7× (1− qdecay).

Assume W0(1, 2) > W0(1, 3); i.e., there is more pheromone on the bad edge than the good edge.

Let X0 = W0(1, 3) − W0(1, 2) < 0, and (Xt)
∞
t=1 be a sequence of independent and identically

distributed (i.i.d.) random variables representing the difference between the amount of pheromone at time

t contributed to the good edge minus the bad edge. Then, for t ∈ {1, 2, 3, . . . }:

Pr(Xt = −1) = 1− qexplore

and

Pr(Xt = 2) = qexplore.

If Xt = −1 then the ant chose the bad edge and deposited 1 unit of pheromone on edge (1, 2). If Xt = 2

then the ant chose the good edge and deposited 2 units of pheromone on edge (1, 3). We want to determine

when Wt(1, 3) > Wt(1, 2).

To determine the difference in pheromone at any time t, we first need to determine how much

pheromone from choices made at times < t still remains. If an ant made a choice at time i, then due to

exponential decay, at time t > i, the contribution of that choice (Xi) to the difference in weight between the

good and bad edge is:

Xi · (1− qdecay)
t−i.

And thus,

Wt(1, 3)−Wt(1, 2) =

t∑
i=0

Xi · (1− qdecay)
t−i.

Let T represent the first time when there is more pheromone on the good edge than the bad edge,
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i.e.:

T = inf

{
t :

t∑
i=0

Xi · (1− qdecay)
t−i > 0

}

Then at time T ,

WT (1, 3)−WT (1, 2) > 0⇐⇒WT (1, 3) > WT (1, 2).

Thus we are interested in finding E[T ] to determine when the probability of taking the good edge is greater

than that of taking the bad edge.

Proposition. E[T ] is significantly lower if the ants do not lay pheromone on the way back from a dead end.

While this is not a mathematically precise statement, we will justify why it is qualitatively true. We

will do this by providing a formula that coarsely approximates the upper bound on E[T ], and then use this

formula to give numerical approximations in the cases where the ants do and do not lay pheromone on the

way back from a dead end, respectively.

Proof idea: Exponential decay means that the difference between the two edge weights is mostly

determined by the most recent choices (i.e., recent ant choices have disproportionately more effect on the

difference in the two edge weights than choices made long ago). Thus, for the good edge to overtake the

bad edge in edge weight, it suffices for the ants to explore the good edge more than expected by chance

in a short period of time. The ants can take advantage of high variability in small sample sizes to put more

pheromone on the good edge than the bad edge, at which point the RankEdge algorithm will be biased

towards selecting the good edge over the bad edge. Finally, by depositing only half as much pheromone on

the bad edge than on the good edge (for reasons explained below), the ants reduce the number of explore

steps needed in a short time period to put more pheromone on the good edge than the bad edge. We

formalize this intuition below.

Proof: Informally, we want to determine how far back in time we need to consider choices before

their contribution to the current difference in weight between the good and the bad edge becomes negligible.

Consider a choice made at time nK, where K is some integer greater than 0. We want to determine the

value of K such that the difference in weight at time nK depends only on the choices made between times

(n−1)K to nK and negligibly on choices made prior to (n−1)K. We also wantK to be such that, regardless

of the choices made prior to nK, it is possible for the good edge to have more weight than the bad edge by

time (n + 1)K. Thus, we want a large enough K to ignore most past choices, but small enough to make

significant deviations possible within the next K steps.

Formally, let K ∈ N, and consider times t = {K, 2K, 3K, . . . }. If K is sufficiently large such that

(1− qdecay)
2K ≈ 0, then to compute the difference at time (n+ 1)K:
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(n+1)K∑
i=0

Xi · (1− qdecay)
(n+1)K−i =

(n−1)K∑
i=0

Xi · (1− qdecay)
(n+1)K−i +

(n+1)K∑
i=(n−1)K

Xi · (1− qdecay)
(n+1)K−i

=

(n−1)K∑
i=0

Xi · (1− qdecay)
2K+(n−1)K−i +

(n+1)K∑
i=(n−1)K

Xi · (1− qdecay)
(n+1)K−i

≈
(n+1)K∑

i=(n−1)K

Xi · (1− qdecay)
(n+1)K−i

(1.3)

TakingK = 75 and qdecay = 0.02 (the RankEdgemaximum likelihood estimate of qdecay), we see that

(1− qdecay)
2K < 0.05,

which is sufficiently small such that we may approximate Wt(1, 3) −Wt(1, 2) using Equation (1.3). Thus,

due to exponential decay, at time nK, we can ignore Xm for m < (n− 1)K.

We have now established that we need to consider only the choices made between times (n− 1)K

to nK. Consider the worst-case scenario, where all choices made in this interval reinforce the bad edge.

Specifically, Xm = −1 for all (n− 1)K ≤ m < nK. We next want to determine how much pheromone needs

to be placed on the good edge in the nextK steps to flip the probabilities. At time (n+1)K, the contribution

of the choices made in this interval will be at least:

a =

nK∑
m=(n−1)K

−1 · (1− qdecay)
(n+1)K−m ≤

nK∑
m=(n−1)K

Xm · (1− qdecay)
(n+1)K−m

Thus, to flip the probabilities within the next K steps, the ants need to make enough contribution to

the good edge such that:
(n+1)K∑
i=nK

Xi · (1− qdecay)
(n+1)K−i > a.

Let S represent the number of times the ants chose the good edge in the interval nK ≤ t < (n+1)K,

i.e.:

S = |{t : nK ≤ t < (n+ 1)K,Xt = +2}|

Let (K − S) represent the number of times the ants chose the bad edge in this interval. Then, in

the worst case, the number of times the good edge needs to be taken compared to the bad edge to flip the
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probabilities is:

2S − (K − S) ≥ |a|

S ≥ K + |a|
3

.

Thus, the probability that the edges flip in the next K steps is at least:

Pr(nK ≤ T ≤ (n+ 1)K) ≥ Pr
(
S ≥ K + |a|

3

)

The right-hand side of the equation above is approximately binomial with parameters p = qexplore, n =

K, which can be further approximated by the normal distribution with parameters

µ = qexplore

σ2 =
qexplore(1− qexplore)

K

Note that in deriving S we ignored exponential decay between times nK and (n+ 1)K, so that we

may treat the Xi in a small window of time as i.i.d. and apply a binomial approximation. It is not obvious

how to compute Pr(nK ≤ T ≤ (n+1)K) with exponential decay included. Below, we find that this binomial

approximation is still sufficient to provide an upper bound, and then we illustrate why it is crucial that the

ants do not lay pheromone on the way back from the dead-end.

Taking qexplore = 0.20,K = 75 we get that:

Pr
(
S ≥ K + |a|

3

)
≈ 0.00011

Thus, the probability that the edges flip probabilities within nK and (n+ 1)K is:

Pr(nK ≤ T ≤ (n+ 1)K) ≥ 0.00011.

If we think of each block of K steps as an independent trial with success probability p ≥ 0.00011,

then we can think of T as an approximately geometric random variable with parameter p ≥ 0.00011. The

expected value of T is then:

E[T ] ≤ K · (1/p) ≈ 75 · 9104 = 682800

Informally, the exponential decay essentially gives the process an approximately memoryless prop-
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erty by nearly erasing the results of decisions that were sufficiently far in the past. To succeed, the ants

simply need one block of K steps in which they take edge (1, 3) more often than expected to push Wt(1, 3)

aboveWt(1, 2) and flip the probabilities. Note that this is the worst case possible, i.e., when the previous 75

time-steps all reinforce the bad edge, which is itself highly unlikely.

Next, we show that if the ants lay pheromone on the way back from the dead-end, then the expected

value of T is significantly higher. Formally, if we eschew the condition that ants do not lay pheromone on

the way back from a dead-end, then both the good and the bad edges increase their edge weight by 2 when

traversed. Then the number of times S the ants need to chose the good edge in the interval nK ≤ t <

(n+ 1)K is:

2S − 2(K − S) ≥ a

S ≥ a+ 2K

4

For qexplore = 0.20, qdecay = 0.02,K = 75, we get that

Pr

(
S ≥ 2K + |a|

4

)
≈ 6.17 · 10−13

and

E[T ] ≤ K · 1
p
=

75

6.17 · 10−13
≈ 1.22 · 1014.

Thus, the number of successes the ants need in a span ofK steps is significantly higher, and so the chances

of any one block of K steps flipping the probabilities is much lower and takes much more time.

In the unlikely event that the two edges ever have equal weight, the ant picks between the two edges

with equal probability. With probability 0.5 it takes the good edge at which point the good edge has higher

weight, and thus the break is fixed. With probability 0.5 the ant takes the bad edge at which point all of the

above analysis may be repeated.

We performed 50 simulations of 1000 steps on the Minimal graph in which ants do lay pheromone

on the way back from the dead-end. We find a 0% success rate, supporting our theoretical insights.

Necessity of queueing: The theoretical argument above provides intuition for why queuing is

necessary for pruning a dead-end. The smaller the sample size, the more likely that enough choices will

deviate from expectation toward the good edge to flip the probability toward taking the good edge. When

ants queue, this decreases the sample size because fewer ants make a choice in each time step. This

decrease in sample size then increases the probability that in a given time interval, ants choose the good
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edge over the bad edge. When ants do not queue, they make more choices in each time step, and so more

time is required to achieve the deviation toward choosing the good edge over the bad edge. If there is no

queuing, then initially only a fraction of ants are at the dead end, and the sample size argument above does

not necessarily hold at the junction. Eventually however, all of the ants in the graph eventually approach the

junction between the good and bad edge, to the point where our sample size argument above eventually

takes hold.

Formally, suppose there are 100 ants. If there is no queuing, then 100 ants will make a choice at

each time step, rather than 1 ant. If we follow the argument above, S would still be approximately nor-

mally distributed, but its variance would be
qexplore(1− qexplore)

100K
, and thus Pr

(
S ≥ K + |a|

3

)
becomes much

smaller because S is much more tightly distributed around its mean. This theoretical intuition is confirmed

by simulation using 1000 steps. If the queuing mechanism is removed, there is a 0% success rate on the

Minimal graph.

1.3.5 Q3. Maintaining a trail in the absence of a break

Here we consider whether the same algorithm used to repair a path can also keep a path intact

when it is not broken. This is important because if different algorithms were used to maintain trails versus

repair trails, then the turtle ants would need some signal to toggle between different methods for choosing

among candidate edges, depending on the context. We found that a single algorithm, RankEdge, is capable

of maintaining trails and responding to breaks.

In particular, we ran the RankEdge algorithm on the Spanning grid without breaking the original

path and found that the trail was preserved without any modification to the algorithm or its parameters

(Figure 1.11). In contrast, the Weighted algorithm performed very poorly on this task. In particular, for

RankEdge, the path entropy using the MLE parameter values from turtle ant data was optimal (0.00). For

Weighted, however, the path entropy for the MLE parameter values was much higher (5.38), indicating poor

maintenance of the original path.

1.3.6 Q4. Pruning as a general principle for discovering alternative paths

Field observations show that turtle ants engage in pruning (Figure 1.12). In our simulations, we

also observed that ants explored multiple alternative paths, and then most of these paths were pruned as

the colony converged to a single alternative path. Further, the paths tended to become shorter over time.

We quantified how many paths were pruned during the simulation using a measure called path elimination

(Methods). We also quantified how the lengths of the remaining paths changed over time using a measure
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Figure 1.11: Analysis in the absence of a break. A) Initial Spanning grid, with no break. B) The final
network produced using Weighted, which does not find a low entropy solution. C) The final graph using
RankEdge, which finds a low path entropy solution.

Table 1.5: Path elimination. For each algorithm, we show the average reduction in entropy over chosen
paths over time (Methods). We omit the Minimal graph, because there is only one possible path from one
nest to the other, and thus no path elimination is possible.

Algorithm Simple Medium Full Grid Spanning Grid European Roads

Weighted 0.94± 0.58 0.48± 0.32 0.00± 0.00 0.001± 0.002 0.14± 0.30
RankEdge 0.18± 0.26 0.25± 0.29 0.14± 0.20 0.15± 0.18 0.10± 0.16
MaxEdgeA 0.54± 0.84 0.69± 1.14 0.26± 0.49 0.78± 1.37 0.01± 0.01
MaxEdgeB 0.25± 0.61 0.66± 1.06 0.29± 0.56 0.84± 1.73 1.18± 2.44
MaxEdgeC 0.40± 0.78 1.29± 1.40 0.48± 0.92 1.03± 1.58 0.04± 0.07
MaxWeighted 0.44± 0.78 1.04± 1.23 0.68± 1.43 1.36± 2.93 0.38± 0.46
Deneubourg 0.43± 0.56 1.60± 0.96 0.55± 1.45 1.40± 2.36 1.47± 2.95

Table 1.6: Path length pruning. For each algorithm we show the average reduction in lengths of chosen
paths over time (Methods) observed. We omit the Minimal graph, because there is only one possible path
from one nest to the other, and thus no pruning is possible.

Algorithm Simple Medium Full Grid Spanning Grid European Roads

Weighted 0.19± 0.29 0.32± 0.47 0.09± 0.47 0.44± 1.74 0.03± 0.08
RankEdge 0.30± 0.58 0.39± 0.58 0.04± 0.14 0.97± 2.59 0.35± 0.50
MaxEdgeA 0.30± 0.27 0.28± 0.30 0.11± 0.17 0.15± 0.20 0.05± 0.10
MaxEdgeB 0.14± 0.23 0.15± 0.23 0.06± 0.10 0.11± 0.16 0.08± 0.14
MaxEdgeC 0.31± 0.29 0.50± 0.36 0.12± 0.17 0.13± 0.21 0.08± 0.13
MaxWeighted 0.29± 0.30 0.39± 0.33 0.15± 0.23 0.19± 0.24 0.17± 0.23
Deneubourg 0.46± 0.17 0.42± 0.28 0.001± 0.003 0.04± 0.09 0.02± 0.09

called path length pruning (Methods). All of the non-linear algorithms exhibit some path elimination and

pruning, and thus could plausibly be used to explain the observed pruning in observed turtle ants. RankEdge

prunes fewer paths than the other algorithms (Table 1.5) because RankEdge does not form as many initial

paths as other algorithms. However, of the paths that are pruned, RankEdge tends to prune more nodes

from the paths (Table 1.6).

For every network, we compared the average path elimination and path length pruning of RankEdge
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Figure 1.12: Turtle ants prune paths. The diagram from [3] shows the results of an experiment in which an
edge was cut. Left: The initial trail is shown in grey. The edge connecting nodes 5 and 6 was cut. After 75
minutes, the turtle ants explored several new paths (red). Center: Five hours after the cut, some of the red
paths were pruned (transparent grey). Ants traveling down from node 7 took one trail, consisting of nodes 6,
15, 16, 17, 18, 4, and 3, because they could not use 12 in this direction. Ants traveling in the other direction
took another trail, consisting of nodes 3, 4, 5, 12, 13, and 14, or the trail consisting of 11, 13, and 14. Right:
The next day, there was additional pruning. Because node 12 could now be used in both directions, ants
traveled both ways on the indicated trail.

versus every other algorithm usingWelch’s unpaired T-test. For path elimination,RankEdge does not reduce

the number of paths more than other algorithms (p < 0.05), as we described above. However, for path length

pruning, RankEdge reduces path lengths significantly more than all other algorithms on the Spanning grid

and European roads (p < 0.05). On the Full grid, RankEdge is significantly better thanWeighted (p < 0.05),

is not significantly different from Deneubourg or MaxEdgeB, and is significantly worse than MaxEdgeA,

MaxEdgeC, and MaxWeighted. No statistical difference is observed for the Simple and Medium graphs,

likely due to their relatively simple topology. These pruning results suggest that RankEdge explores fewer

paths initially but is better at selecting the shortest of the paths it explores. RankEdge tends to prune fewer

paths (path elimination), but of the paths it does explore, RankEdge converges to the shorter paths (path

length reduction).
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Field observations [3] also showed that when ruptured trails are repaired, new nodes are added to

the network, and in subsequent days, some of the nodes are pruned. Such pruning of nodes also led to

global pruning of paths (Figure 1.12). Such an “explore-exploit” strategy may help turtle ants quickly find a

solution that re-connects a rupture in a trail, and may also help the colony to optimize the coherence of the

trail, by minimizing the number of junctions at which ants could get lost.

Interestingly, using pruning-based strategies to discover the most appropriate edges or paths to

keep is a common strategy used by biological systems. In particular, during the development of neural cir-

cuits in the brain, synapses are massively over-produced and then pruned-back over time [61]. This strat-

egy is thought to help neural circuits explore possibly topologies and then converge to the most appropriate

topology based on environment-dependent feedback. A similar process occurs during the development of

vascular (blood flow) networks in the body [117]. Thus, pruning may be a common biological strategy of

network design when multiple topologies need to be explored in a distributed manner.

1.4. Discussion

Our primary contribution is to address an engineering problem (maintaining a trail network and find-

ing alternative paths to route around broken links in the network) using biologically feasible parameters and

models motivated by how turtle ants may solve this problem in the field. Successful performance by the algo-

rithm in simulation, using realistic parameter values, indicates that the algorithm is a plausible candidate to

describe how the ants create their networks. TheRankEdge algorithm achieved a better maximum likelihood

estimate (Figures 1.2–1.4) than every other non-linear model except for MaxEdgeA. When parameterized

by data from field observations, RankEdge was better able to find a single, short path with high probabil-

ity compared to other algorithms (Tables 1.2,1.3, 1.4). From this, we conclude that non-linear models, in

particular RankEdge and MaxEdgeA, represent the two best plausible models of turtle ant behavior.

By testing performance across six different networks, we found that the turtle ants appear to have

evolved an algorithm that may not be optimal for any particular planar network but is robust to some variation

in the topology. Further, non-linear algorithms exhibited pruning, which also occurred in field observations [3]

(Table 1.6, Figure 1.12).

There are several features of our algorithm that are critical for success in repairing breaks to the

routing backbone. First, to minimize path entropy it is essential to have a stronger-than-linear bias towards

choosing the highest-weighted edge (RankEdge), rather than choosing edges proportional to their edge

weight (Weighted). This helps constrain the search space and leads to better convergence to a single

consensus path. We emphasize that Weighted has a strong success rate because pheromone is left on
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every edge in the graph (see e.g., Figure 1.7A–B). This guarantees that there exists some path with positive

probability. However,Weighted does not commit to a single path as effectively as an algorithm with a strong,

non-linear bias toward the highest-weighted edge, such as RankEdge. The path entropy of Weighted is

high because essentially every path in the graph has high probability, and the average path length is high

because the algorithm does little to eliminate long paths and commit to short paths. Second, to repair breaks

it is essential to use bi-directional search and avoid backtracking. Observations show that when turtle ants

encounter a break, ants from both sides of the break attempt to repair the trail [3]. When ants from both

sides meet, they each encounter a trail that is already strongly reinforced and guided towards the other nest.

In addition, the ability to avoid backtracking allows ants to avoid going back and forth along the same edge.

Third, we showed theoretically that the time needed to find an alternative path decreases significantly if turtle

ants reaching a dead-end in their trail do not leave pheromone while returning back from the dead-end.

The RankEdge algorithm is parsimonious, capable of both maintaining trails and repairing breaks

to trails using the same underlying logic. Observed ants encounter diverse situations analogous to breaks

in the ongoing maintenance of trails. We find that a single algorithm can solve two diverse problems without

requiring the additional complexity of a signal that distinguishes such situations from a rupture in the trail.

How each path is established originally is an interesting yet distinct question. Paths are not always the

shortest globally, and the physical structure of edges in the canopy appears to affect how these paths are

selected.

The algorithm can be extended to improve performance, though this may involve sacrificing bio-

logical realism. One possible extension would allow ants to “toggle” between different parameter values or

algorithms in different situations. For example, an ant could use RankEdge, but if it encounters a dead-end

or massive crowding (determined for example by a large increase in the frequency of antennal contacts with

other ants [18, 72]), then it increases its probability of exploring new edges. This would be similar to a dis-

tributed version of simulated annealing, with the value of qexplore corresponding to the decreasing value of the

temperature parameter. A second possible extension would be to use multiple types of pheromone [118].

Ants could use negative pheromone to signal to other ants not to select a certain edge, for example, to-

wards a dead-end. Further work is needed to measure the computational abilities of turtle ants to determine

whether such extensions depart from biological realism.

There are some differences between our synthetic networks and the environment of the observed

turtle ants. First, turtle ant trail networks in the canopy are 3D planar networks, whereas here, to begin

the investigation of arboreal ant trail networks, we used 2D planar networks. The ideal test case would be

a suite of synthetic networks that are isomorphic to some portion of the turtle ant canopy. In lieu of this,

we describe five synthetic networks, some of which have been used by prior work, that each collectively
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test the ability of different algorithms to solve the network repair problem. These five networks comprise a

necessary (if not exhaustive) set of test cases. Second, in the tropical forest, many edges are physically

difficult to traverse, which may provide natural inhibition for selecting certain edges. Third, in the canopy,

edges are not all of the same length. In future work that includes variability in edge lengths, synchronous

walks will need to be modified since longer edges require more time-steps to traverse. More generally,

further work is needed to determine the physical properties of junctions and branches in the canopy and

how these properties influence the likelihood of traversing an edge.

Finally, the probabilistic RankEdge algorithm is biologically feasible, requiring less computational

complexity and assuming fewer memory requirements than many other distributed graph algorithms com-

monly used in computer science. This suggests that a biological algorithm evolved to deal with the con-

straints of the tropical forest canopy may be useful in other applications, such as in swarm robotics or

molecular robots [113, 12, 114, 115]. For such applications, the best algorithm to choose depends on the

requirements of the problem. We find evidence that RankEdge is the best algorithm to achieve relatively

high success rate and low path entropy. If agents do not need to adhere to a single path, then theWeighted

algorithm performs better, though the length of the path may be long. It appears that turtle ants use an al-

gorithm that finds a single short path [3], as RankEdge provides. For trivial graphs with only one alternative

path, both algorithms perform similarly.

Overall, our work contributes to the growing intersection of distributed algorithms used by natural

biological processes [27, 67].

1.5. Methods

1.5.1 Maximum likelihood estimation of parameter values

For each candidate algorithm, we varied qdecay, qexplore ∈ (0, 1) and evaluated the likelihood that the

algorithm with a specific set of parameter values would have generated the choices made by turtle ants

observed in the field. The edges traversed by the turtle ants, and times the edges were traversed, were

used to compute how much pheromone had been added to and had decayed from each edge, to give the

amount of pheromone on each edge at any time. In modeling pheromone decay, we treat qdecay as the

rate of decay per second. When computing the amount of decay between two consecutive ant choices,

we decay all of the edges in proportion to the number of seconds elapsed between the two choices. For

each candidate algorithm, if we know all of the edge weights at a given time and the value of qexplore, we

can compute the likelihood of a given choice. Figure 1.2A–B provides an example of a calculation of the
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likelihood of a choice for each candidate algorithm.

For a given combination of qdecay, qexplore we performed this likelihood computation for every ob-

served choice in each of the 13 junctions. We updated the edge weights based on the choice and the

amount of time that passed between successive choices, and then repeated this process on the next choice

made by the next ant. For each junction of observations at a given node on a given day, we computed the

maximum likelihood estimate (MLE) for each parameter value pair. We then added the log-likelihoods for

all the 13 junctions.

As we formalize in section 1.3.4.8, the exponential rate of pheromone decay means that the most

recent ant choices have the largest effect on the current edge weights at a junction. Pheromone added far in

the past will have largely decayed and will not contribute much to the current weights. Thus, we do not need

an extensive history of the choices to perform accurate modeling. It is not currently possible to measure or

manipulate pheromone levels on the branches in the canopy.

1.5.2 Additional technical details

Each algorithm includes the following constraints motivated by field observations:

1. Observations suggest that turtle ants tend not to backtrack, but instead tend to keep moving along

the trail in the same direction, indicating that turtle ants have at least enough sense of direction to

avoid going back and forth over the same edge. Our simulations include three exceptions to this.

First, because our simulations include two nests with ants going back and forth, upon reaching the

nest, an ant is allowed to backtrack along the same edge it used to reach the nest. Second, if a

simulated ant reaches a dead-end node that has no outgoing edges other than the previously traversed

edge, it is allowed to backtrack. However, the ant does not lay pheromone on the way back until it

reaches a node with two edges, excluding the edge it previously traversed. In field experiments, it is

difficult to determine whether a turtle ant is laying pheromone; however, it is known that Lasius niger

ants down-regulate pheromone deposition at dead-ends to avoid recruitment during crowding [119,

118, 118]. It is possible that turtle ants similarly down-regulate pheromone in response to dead-ends.

In section 1.3.4.8, we also provide a probabilistic argument for why it is critical that ants do not lay

pheromone when returning from a dead-end to repair the break. Thus, in addition to the ability to

avoid backtracking, each ant requires one binary state variable that is 0 or 1 depending on whether

the ant is coming back from a dead end.

2. Turtle ants queue at a node and leave in a first-in first-out manner. In other words, if more than one

ant is at the same node, only one ant chooses an edge in each time-step. In the field, turtle ants
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walk along narrow branches, almost always one ant at a time in each direction. We find that queueing

increases the success rate of the algorithm (section 1.3.4.8).

3. When turtle ants take an “explore step”, they often traverse an edge for a short distance, and then return

to the original node [3]. This builds a slight extension off the primary path, which can be extended by

subsequent ants. In all algorithms, if a simulated ant takes an explore step, it goes across the edge

and comes back in one time-step. Thus, two units of pheromone are left on the edge, and the ant is

back at the node it started from. (R3-27) An explore step is defined as any choice that cannot occur

unless qexplore > 0. For Weighted, this involves taking an edge with zero weight; for RankEdge, this

involves taking an edge that does not have the highest weight. For Unweighted, there is no ‘explore’

step, because ants are not inherently biased towards following any particular pheromone trail.

4. Because pheromone decays exponentially, theoretically once an ant lays pheromone on an edge, that

edge’s weight will never decay to absolute 0. In practice, if the edge weight stays unchanged even

after multiplying by the decay rate (due to numerical computation error, occurring at roughly 10−300),

then we reset the weight of that edge to absolute 0. Another possible approach would be to introduce

a pheromone detection threshold parameter. If an edge had pheromone below this threshold, the ant

would treat the edge as if it had no pheromone. We avoided this approach because it would introduce

another parameter to optimize and compare.

5. All edges are assumed to have the same length, and it takes exactly one time step for an ant to cross

an edge.

1.5.3 Performance metrics

Below we formally describe the three performance metrics used to evaluate each algorithm, after

it ran for T time-steps. Intuitively, the simulated ants have successfully found a path if they can reach one

nest from the other without taking any “explore steps”. We thus measure the performance of each algorithm

assuming qexplore = 0, and consider all paths that may be taken with positive probability under this constraint.

ForRankEdge and other non-linear algorithms, ants travel from one nest to the other by following the highest-

weighted edges. For Weighted, ants travel from one nest to the other using only edges of positive weight.

Formally, let the pheromone subgraph be the subgraph induced by the two nest nodes, all edges

with a nonzero weight, and all nodes adjacent to edges with non-zero weight. Let G be a pheromone

subgraph and P = (v1, v2, . . . vn) be a path in G, with nests v1 and vn. For a node vi ̸=1 ∈ P , define the

candidate edges CP (vi) = {(vi, u) ∈ E(G) : u ̸= vi−1}, i.e., the edges that the ant could take from vi without
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backtracking to its previous node. Let vi, vi+1 ∈ P be consecutive nodes in the path; we say edge (vi, vi+1)

is maximal with respect to P if w(vi, vi+1) = maxu∈CP (vi) w(vi, u). The path P is a maximal path if for every

pair of consecutive nodes vi, vi+1 ∈ P , the edge (vi, vi+1) is maximal with respect to P . An ant taking a

maximal path always takes an edge with the highest weight; thus, a maximal path allows an ant using one

of the non-linear algorithms to commute between two nests with positive probability even if qexplore = 0.

Next, define a pheromone path to be a path in which all edges have positive weight. Such a path

allows an ant following theWeighted algorithm to commute between two nests with positive probability even

when qexplore = 0.

For a given algorithm, define a solution path to be a path that can be traversed with positive proba-

bility under that algorithm when qexplore = 0. For all the non-linear algorithms discussed here, solution paths

are equivalent to maximal paths. For the Weighted algorithm, a solution path is equivalent to a pheromone

path.

Let p̂ = (p1, p2, . . . ),
∑

i pi = 1 be a probability distribution. Define the entropy of the distribution to

be: S(p̂) = −
∑

i pi log(pi).

At the end of the simulation, we evaluate the pheromone subgraph of each algorithm by computing

the following measures:

• Success rate (higher is better): The probability that the ants form a solution path. This is defined

empirically by computing the percentage of the N simulations where a solution path is formed in the

final graph.

• Path entropy (lower is better): An information-theoretic measure of how well the ants converge onto

a single solution path.

– Let M1,M2, . . . ,Mn be the set of all n solution paths in the final graph.

– Let p1, p2, . . . , pn be the probabilities of taking each solution path with qexplore = 0. The probabilities

p̂ = (p1, p2, . . . , pn) form a probability distribution.

– The path entropy is then: S(p̂).

• Average path length (lower is better): The average length of the solution paths in the final graph.

Path length is defined to be the number of nodes in a path.

To compute the pruningmetrics, we first define a chosen path as the sequence of nodes v1, v2, . . . , vn,

after removing cycles, that an ant takes to successfully walk from one nest to another. Figure 1.13 illustrates

why removing cycles is necessary when comparing chosen paths.
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Figure 1.13: Motivation for removing cycles.

Over the course of the simulation, we track all chosen paths for all ants that successfully walk from

one nest to the other. This includes the number of times each path was chosen — and thus the distribution

over the chosen paths — and the lengths of these paths.

• Path elimination: An information-theoretic measure of the degree to which paths from one nest to

the other are eliminated over time.

– Let St = S(p̂t) be the entropy over the distribution of chosen paths p̂ that have been completed

at or before time t.

– Let Smax = max
1≤t≤T

St be the maximum chosen-path entropy over the entire simulation.

– The path elimination is then the maximum entropy minus the entropy at the end of the simulation:

Smax − ST .

• Path length pruning: A measure of the degree to which ants reduce the lengths of the paths they

take over time.
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– Suppose at time t the ants have taken chosen paths p1, p2, . . . , pn with frequencies c1, c2, . . . , cn.

Let l(pi) be the length of path pi. We define the weighted-mean chosen path length at time t to

be: Lt =

∑
i ci · l(pi)∑

i ci
.

– Let Lmax = max
1≤t≤T

Lt be the maximum weighted mean chosen path length over the entire simu-

lation.

– The path length pruning is then: Lmax − LT .

Robustness across network topologies: To determine which parameter values performed well

across all the planar topologies tested, we defined the robustness of a set of parameter values (qexplore, qdecay)

to be the geometric mean of the success rates for those parameter values on all six networks. We use the

geometric mean because it penalizes parameter values that perform poorly on any one particular graph;

for a set of parameter values to have a high geometric mean, it must perform well on every graph. When

computing robustness, we weight the success rates over all networks equally. This is done for two reasons:

first, this highlights algorithms that perform well under a variety of distinct but equal conditions; and second,

we do not currently have complete data on which topologies are more or less likely to occur in the canopy,

and thus it is not clear how weighting factors should be selected.

Application to the European road network: We sampled a portion of the European road network.

This sample contained the same number of nodes as the Full grid (11 × 11 = 121 nodes). Sampling was

done by selecting a random node and performing a breadth-first search until 121 nodes were visited. The

network contained these 121 nodes and all the edges adjacent to these nodes. We then randomly selected

two nodes and removed a randomly-chosen edge in the shortest path between those nodes. If removing

this edge disconnected the two nodes, we discarded the pair of nodes and picked a new randomly chosen

pair of nodes. We then applied our algorithm to repair the trail.

1.5.3.1 Removing cycles when comparing chosen paths

Figure 1.13 shows that ants that take the top path are all using the same core path, even if some

ants go around the loop more times than others. To account for this, we removed cycles when computing

and comparing chosen paths. An alternative would be to consider each path that takes a different number of

loops unique. This, however, is limiting. For example, two paths that exactly overlap except for the number

of loops used would be considered equivalent to two paths that have zero edges in common. We wanted

to avoid having to set an arbitrary threshold on how “similar” two paths need be before they are considered

the same, and thus we simply removed all cycles from chosen paths.
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1.6. Source code and datasets

All source code for the algorithm and all datasets for the ant choices are available at our Github

repository: http://github.com/arjunc12/Ants.
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Chapter 2

Better Tired than Lost: Turtle Ants

Prioritize Coherence over Shortest

Paths.

In the previous chapter I showed how turtle ant behavior can be used to derive a distributed algorithm

for repairing breaks in a trail network. The next step is to try to reverse-engineer the algorithm that turtle ants

use to construct the trail network in the first place. To do this, I start by exploring what design principles guide

the construction of the foraging network. I provide evidence that turtle ants take advantage of environmental

variation when foraging (while demonstrating how an algorithmic model gives us a framework to describe

and test such ecological hypotheses), suggesting possible ways in which human-designed swarm robots

may be improved.

While most of my work involves computational analysis, for this chapter part of my contributions

involved field work. In particular, I assisted in the collection of data on trail networks formed by turtle ants.

This was an eye-opening experience in several ways. First, seeing how the field work took place gave an

appreciation for the practical difficulties involved in data collection. Ants are fickle, and they may not be

be wholly amenable to exploring a newly created junction. Great care and delicacy must be taken to not

damage a branch or startle the ants. Even if the experiment works to perfection, human-annotated data can

be error-prone. This experience gave me a better understanding of how to design feasible experiments and

more broadly, what ecology ‘is’ and how to better communicate with ecologists.

While field work can be physically and mentally tiring, it can be equally illuminating. It was quite
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humbling to see the degree to which turtle ants outperformed their simulated counterparts. Turtle ants

are not mindless agents following a rote process; they are constantly taking stock of their environment,

interacting with peers, and making decisions on the fly, such as turning around in response to a long branch

or a newly-inserted metal wire that bears no resemblance to the vegetation. The social aspect of the ants

was especially sorely missing from the simulations. Overall, seeing the ants in action will give me more

intuition for how the ideal simulations ‘ought’ to behave.
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Abstract

Creating a routing backbone is a fundamental problem in both biology and engineering. The routing

backbone of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food sources using trail

pheromone. Unlike species that forage on the ground, arboreal ants are constrained to form trail networks

along branches and vines within the vegetation. We examined what objectives the ant networks meet by

comparing the observed turtle ant trail networks with alternative networks of random, hypothetical trails in

the same surrounding vegetation. We found that turtle ant trail networks favor coherence, keeping the ants

together on the trails, rather than minimizing the distance traveled along edges in the graph. The ants’

trails minimized the number of nodes traversed, reducing the opportunity for ants to get lost at each node,

and favored nodes with 3D configurations most easily reinforced by pheromone, reducing the opportunities

for ants to diverge onto different paths. Thus, rather than forming the shortest paths, the ant networks take

advantage of natural variation in the environment to promote themaintenance of a coherent trail that ensures

that ants stay connected along the routing backbone.

Keywords: Cephalotes, ant trail network, routing networks, foraging, distributed algorithms, search,

exploration, shortest path, spanning tree

2.1. Introduction

Many engineered systems rely on a backbone routing network, whose goal is to ensure that any

two entities or devices on the network can communicate through some path [1, 17, 120]. Some biological

systems, such as neural arbors [121], plant arbors [122], and slime molds [60], also use routing networks,

to transmit information and nutrients. Effective design of routing networks depends on the physical envi-

ronment, because variation in the environment can affect the accuracy and rate of communication in both

engineered [123, 10, 124] and evolved natural networks [125, 126, 127, 128]. The environment influences

how the system chooses search strategies, prioritizes competing objectives, and coordinates its local deci-

sions. For example, wireless networks operating in difficult to reach environments may use different routing

strategies to minimize energy consumption of devices [123]; similarly, in bacterial navigation, chemicals

appearing as localized pulses in the environment can affect gradient sensing and movement patterns [127].

The 14,000 species of ants have evolved diverse distributed routing algorithms to search for, obtain,

and distribute resources [129, 67] in diverse environments [72, 19, 69, 4, 130]. Models of engineered

routing networks inspired by ants often emphasize the goal of minimizing the distance traveled. Ant colony

optimization (ACO), first proposed in 1991, loosely mimics ant behavior to solve combinatorial optimization
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problems, such as the traveling salesman problem [34, 83, 37] and other such routing problems [131]. In

ACO, individual ants each use a heuristic to construct candidate solutions, and then use pheromone to

lead other ants towards better solutions. Recent advances improve ACO through techniques such as local

search [84], cunning ants [36], and iterated ants [85].

A fascinating recent area of biological research examines the goals met by the trail networks of

ants [130]. Studies of species that forage on a continuous 2D surface [69], including Pharaoh’s ants [54],

Argentine ants [19, 70, 71], leaf-cutter ants [72], army ants [73, 132], red wood ants [74], and meat ants [133,

134], show that ants use local chemical interactions to form trails [75, 76, 73], regulate traffic flow [135],

search collectively [136], and form living bridges [137].

There are many objectives that an ant colony’s trail network might meet, including minimizing energy

costs by reducing the distance traveled, keeping the ants together to form a coherent trail, resilience to

rupture, and effective searching [138]. Ant species that forage and build trails on the ground have few

constraints on trail geometry because their trails can form nodes and edges anywhere on the 2D plane.

Prior work [102, 71, 138] showed that ground-living ants, such as red wood ants and Argentine ants, may

minimize the distance traveled by forming trails with branch points that approximate 2D Steiner trees [19,

139, 140]. However, minimizing distance may not be the only objective that ant trail networks attempt to

optimize. Army ants link their bodies to form a bridge across gaps, but may not form the shortest possible

bridge if this requires the use of more ants [77]. Meat ants form trail networks that link nests and trees as

nodes, and their choices of which nodes are linked, as well as the direction and length of trails, suggest that

robustness to the loss of a node is as important as minimizing the distance traveled [134, 133].

Many ant species operate in 3D environments, such as arboreal ants that nest and forage in trees

and bushes. Unlike species that have evolved to create graph structures in continuous space in an un-

constrained 2D plane, arboreal ants must solve problems on a natural graph structure. They cannot form

trails with nodes and edges at arbitrary locations; instead, they can use only the nodes and edges that are

available to them. The arboreal turtle ant (Cephalotes goniodontus) nests and forages in the tree canopy

of tropical forests [141]. A turtle ant colony creates a trail network in the vegetation that connects several

nests, providing a routing backbone that must be maintained to allow resources to be distributed throughout

the colony [56, 3]. Ants search off the backbone to find and create trails to ephemeral food sources. The

colony modifies the trail from day to day, sometimes forming small alternative paths, or loops, of which one

is eventually chosen. The colony repairs the backbone in response to frequent changes in the vegetation

caused by plant growth and by ruptures made by wind or passing animals [3].
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2.2. Results

2.2.1 Candidate objectives

Here we mapped trail networks of turtle ants in their natural habitat and computationally tested what

objective functions these trails may be optimizing. We compared the observed networks with simulated

random networks, to determine how well the observed networks meet three objectives, possibly in combi-

nation [134]:

1: Minimizing the distance traveled, which was measured as the average length of the edges in the

trail network. This is equivalent to minimizing the total trail length for a fixed number of edges. Minimizing

the distance traveled minimizes the energy cost of building the trail network. This distance, however, is not

equivalent to the number of nodes traversed, as is often assumed in various optimization algorithms [142,

131, 39, 38], including our previous work on turtle ants [143], because in the vegetation, the lengths of edges

vary; the distance between one node and another ranges from less than a centimeter to more than a meter

(Table 2.1).

2: Minimizing the total number of nodes, which promotes the maintenance of a coherent trail by

reducing opportunities for ants to get lost, but also reduces the opportunities for exploration and thus for

finding new resources off the trail. The number of nodes was measured by counting the nodes traversed

along edges used in the trail network. We previously studied how ants at a node select which transition

through a node to traverse based on the rate at which volatile pheromone is deposited [143]. Simulation

results were consistent with field observations [56] indicating that ants at a node have a constant probability

of exploring, or taking a path that is not the one most strongly reinforced by pheromone, of about 0.2 per

node [143]. Thus each node presents an opportunity for ants to get lost, and lost ants may lay pheromone

trail that could lead other ants astray. Each node is also an opportunity to meet the ants of other colonies

that make trails in the same vegetation. We test here the hypothesis, indicated by previous observations

[3], that modification and repairs to the backbone tend to reduce the number of nodes over time.

3: Minimizing the difficulty of establishing a pheromone trail by finding trajectories through nodes that

are most easily reinforced by pheromone. This objective also contributes to the creation and maintenance

of a coherent trail. We hypothesized that the physical configuration of a node influences how likely are

successive ants to cross the node in the same way, thus reinforcing it with volatile trail pheromone. The

ants have short antennae that detect pheromone only locally, so the transition from one edge through a

node to another edge is reinforced only when successive ants take exactly the same trajectory through the

node (Figure 2.1). Nodes are variable 3D structures, ranging from a simple fork created by a branch in a
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plant, to a cluster of entwined vines and branches from different plants. We used an arbitrary categorical

index to estimate how many possible trajectories an ant could take from one edge through a node to another

edge, and thus how likely a node is to be reinforced (Figure 2.1, details below). We tested whether the ants’

behavior reflected this estimate. Our previous work [3, 143] did not take into account variation among nodes,

and did not examine how trails are selected from among the many available alternative networks.

Preference for nodes more likely to be reinforced was measured as the average transition index

of all transitions in the trail network. The transition index is a categorical value that ranged from 1, where

successive ants are most likely to take and reinforce the same trajectory through the transition, to 4, where

successive ants are least likely to take and reinforce the same trajectory through the transition (Figure 2.1).

The value of the transition index was assigned based on a visual estimate of the number of different trajecto-

ries available for ants to traverse the node, drawing on previous observations of the flow of ants on different

edges from a node (e.g., see Fig. 7 in [3]). Each transition through a node in the vegetation (e.g., edge

u → v through node v to edge v → w; Methods) was assigned a value of the transition index. A particular

node v may have more than one transition index if there were many edges connected to that node.

2.2.2 Mapping and modeling turtle ant trail networks

To determine what objectives are optimized by the ants’ choice of paths within the vegetation (Fig-

ure 2.2A), we mapped the trail networks that connected the nests and naturally occurring, ephemeral food

sources of three colonies (Tejon 189, Tejon 446, Turtle Hill 460), for 10–15 days over the course of 6 weeks,

in a tropical dry forest at La Estación Biológica de Chamela in Jalisco, Mexico. We visually tracked the path

taken by the ants and identified each node or junction in the vegetation, where an ant had a choice among

more than one edge in the direction it is traveling, as well as the edges between nodes. We measured the

length of each edge. We assigned a transition index to each each transition from one edge through a node

to another edge, to estimate how likely were successive ants to take the same trajectory through the node

and thus reinforce it with pheromone. To evaluate how the ants choose nodes and edges from the options

provided by the surrounding vegetation, we also mapped all nodes, measured all edges, and assigned tran-

sition indices, for all possible paths up to five nodes away from each node used by the ants. A trail network

on one day is illustrated in Figure 2.2B–C.

We modeled the network of vegetation as a directed, weighted graph, G = (VG, EG), where each

junction forms a node, and edges represent stems or branches that connect one node to another. Edge

weights correspond to physical length. Node weights, which are used in some variants of the Steiner tree

problem [144, 145], correspond to transition indices. We modeled transition indices by converting G into
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Figure 2.1: Transition indices. The photos show examples of nodes of each transition index (TI). The open
black circle shows the node traversed. The blue arrow shows the transition, leading from the edge along
which ants enter the node, through the node, toward the edge along which they exit. Each transition from
an edge to a node to another edge was assigned a transition index with a value between 1 and 4. The
lower the transition index, the more likely it is to be traversed by successive ants in the same way, and thus
more likely to be reinforced. TI–1 (upper left): a node linking two edges on the same plant; in the example
shown, all ants are likely to walk the same way across the top of the branch. TI–2 (upper right): a node
that links one plant to another along a trajectory through a node that is likely to be the same for successive
ants; in the example shown, most ants are likely to climb up the brown vine from the position shown by the
ant approaching the junction from the left. TI–3 (lower left): a node that links one plant to another plant
with more than one possible trajectory through the node; in the example shown, ants on the upper vine can
reach the lower one either directly or by following the smaller vine that ants in the photo are using. TI–4
(lower right): a node that links one plant to another with many possible trajectories that are often changed
by conditions; in the example shown, wind can easily move the leaf so that different ants reach the junction
between the leaf and branch, at different places.

62



1 m

A

N

F

N

F
1 m

B

Figure 2.2: Turtle ant vegetation. A) Vegetation of the network mapped in B, photographed in the dry
season before the branches have leaves. B) Illustration of part of the trail network for Tejon 189 on day 9.
The figure shows 166 of the 217 nodes mapped in the surrounding vegetation. Edge lengths are scaled to
measured distance, but actual location is not represented here. N represents a nest, F represents a food
source. Circles represent nodes. Solid lines represent edges used on that day; dashed lines represent
edges not used that day (Methods). The color of a node represents the transition index (TI) from the pre-
ceding edge to the following one: TI–1, open circles; TI–2, blue; TI–3, red; TI–4, black. At a node where
there is a choice of more than one edge in the indicated direction, so that there could be more than one
transition taken through a given node, a TI was assigned to each possible transition. For such nodes with
more than one transition index, the TI is represented graphically with a pie chart, and arrows show which
transition has the TI represented by the arrow’s color.

63



C

Figure 2.2: Turtle ant vegetation. C) Map of all 217 nodes for Tejon 189 on day 9. Symbols as in B. The
large size of the network makes it difficult to show all TIs per node, so nodes with more than one TI are
colored green.

its corresponding line graph (Methods). The nodes corresponding to the nests and food sources were

designated as terminals. We compared the extent to which each observed network on a given day optimized

each of the 3 objectives, relative to a set of 100,000 random networks connecting the same nests and food

sources (Methods).

2.2.3 Turtle ant trail networks favor coherent trails over shortest paths

We compared the relation of observed and random networks, testing for differences among ob-

jectives, colonies, and for a statistical interaction of objective by colony. We tested the hypothesis that the
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Table 2.1: Comparison of observed and available networks within the vegetation for the three
colonies observed. Values for ‘Available’ are for all of the vegetation mapped. Values for ’Used’ are
means, averaged over observation days, for the paths used in each colony’s network (n = 10 for Tejon 189
and Turtle Hill 460, and n = 11 for Tejon 446). Connectivity is a measure of the smallest number of nodes
needed to get back to the trail used by the ants from an edge off the trail, averaged over all edges that lead
off the trail used by the ants (Methods).

Tejon 189 Tejon 446 Turtle Hill 460
Available Used Available Used Available Used

Edge
Length (cm) 10698 20.71± 6.21 7615 13.46± 0.74 14696 39.97± 9.43

Total
Nodes 217 43.5± 9.43 196 36.09± 3.81 202 54.0± 17.93

Transition
Index 1.60 1.31± 0.06 1.70 1.44± 0.13 1.48 1.44± 0.10

Connectivity — 3.75± 0.23 — 4.00± 0.24 — 4.46± 0.95

networks favor coherent trails, and thus minimize the total number of nodes and the average transition index

more than they minimize distance traveled.

In all three colonies, the ants’ networks optimized the maintenance of coherent trails. There were

significant differences among objectives in howwell observerd networks were optimized by observed relative

to random networks (Scheirer-Ray-Hare two-factor ANOVA df 2, H = 31.718, p < 0.001). Trail networks

minimized the average transition index (Dunn test , Z = 4.395, p < 0.001) and minimized the total number of

nodes (Dunn test, Z = 5.247, p < 0.001), significantly more than the distance traveled (Figure 2.3A). There

were no significant differences between the extent to which observed networks, compared to random ones,

minimized the average transition index and the total number of nodes (Dunn test, Z = 0.852, ns).

Colonies did not differ overall in the relation of observed and random networks for the 3 objectives (S-

Test, df 2,H = 2.010, ns), but there was a significant objective x colony interaction (S-test, df 4, H = 13.284,

p < 0.01). One colony, Turtle Hill 460, differed from the other two colonies in two ways, apparently because

of differences in the local vegetation: first, it minimized total nodes, relative to random networks, significantly

more than it minimized average transition index (Dunn test, Z = 3.347, p < 0.05), and second, it did not

minimize average transition index significantly more than average length, relative to random networks (Dunn

test, Z = 1.012, ns).

Random networks with the same number of nodes as the observed network did not differ in total

length from the observed network. We tested this to control for the confounding of total edge length and

total number of nodes because they are correlated (R = 0.67), and to test which one is prioritized when the

two objectives give different results. We compared total length in observed and random networks by using
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a percentile measure (Methods). At 50%, the observed network is equal for the objective to the average

random network; the lower the percentile, the better the observed network optimized the objective compared

to random networks. In all three colonies, the total length of observed networks was similar to that of the

random networks with the same number of nodes: the percentiles were 35.49 ± 39.57% for Tejon 189,

40.59 ± 27.65% for Tejon 446, and 34.89 ± 38.84% for Turtle Hill 460). For all three colonies, the percentile

was within one standard deviation of 50%.

2.2.4 Turtle ant trail networks increase coherence over time

From day to day, progressive changes in the trail networks of all three colonies tended to mini-

mize the average transition index and the total number of nodes more than they minimized average length

(Figure 2.3B–E). The extent to which average length was minimized varied greatly from day to day in all

three colonies, suggesting that minimizing this objective was not a strong priority. Figure 2.3B shows an

example of a day-to-day change that minimized both the number of nodes and average transition index.

From day 9 to day 10, the network changed from the path shown in yellow to the path shown in blue, thus

eliminating the 6 nodes circled, including 2 nodes with TI–2 and one node of TI–4, in favor of a path with

nodes all of TI–1 (Figure 2.3B). Overall, trails in Tejon 189 (Figure 2.3C) consistently minimized the total

number of nodes and average transition index but twice increased the average length (days 7 to 10 and 11

to 15). Similarly, in Tejon 446 (Figure 2.3D), trails progressively decreased the total number of nodes and

average transition index, but increased average length from days 6 to 7, 8 to 9, and 11 to 13. In Turtle Hill

460 (Figure 2.3E), the network consistently minimized the total number of nodes. This trail network shifted

nests and food sources, and the change led to lower transition indices (days 2 to 10). There was an initial

decrease in average edge length (days 4 to 7), due to a rupture on day 6 of a node leading to a 95 cm

edge, one of the longest edges we measured, rather than to a choice of shorter edges, and then the trails

increased in average edge length (days 7 to 14). These day-to-day changes indicate that the networks do

not consistently minimize the distance traveled.

2.2.5 Turtle ants form loops to promote coherence

Turtle ants form loops in their paths, consisting of small, temporary alternative paths with the same

start and end points, and over time, all but one of these paths tends to be pruned away [3]. Loops are often

considered to decrease the efficiency of routing networks [17, 120], but may increase robustness by offering

alternative paths if links are broken. Here we hypothesize that loops may occur because trails tend to form

along easily reinforced nodes, and some sequence of easily reinforced nodes may naturally form a cycle in
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Figure 2.3: Comparison of random and observed networks. A) Similarity of observed and random net-
works measured as mean percentile (Methods). A percentile of 50 (dashed line) indicates that the observed
network optimized the objective to the same extent as the average random network; the lower the percentile,
the better the observed network optimized the objective compared to random networks. Error bars show
standard error of the mean. B) Day to day change in trails in Tejon 189, showing a change that decreased
both number of nodes and average transition index. Symbols for transition index are the same as in Fig-
ure 2.2B :TI–1, open circles; TI–2, blue; TI–3, red; TI–4, black. Solid yellow lines show trails used on day 9;
solid blue lines show trails used on day 10; yellow circles and dashed blue lines show trails linking the six
nodes that were used on day 9 but not on day 10. C–E) Day to day changes in mean percentile for each
objective. Blue represents average edge length, orange represents average transition index, and green
represents total number of nodes. A red ’X’ indicates one or more ruptured edges on that day. C, Tejon
189, D, Tejon 446, E, Turtle Hill 460.

the graph.

Compared to available loops with the same start and end points (Methods), the observed loops

tended to use nodes with low transition indices, and tended to minimize the number of nodes. We compared

the centered ranks (Methods) of the average transition index, number of nodes, and average edge length,
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of paths connecting the same two start and end points on each trail in observed and available loops. A

negative value of centered rank indicates that an observed path has a low transition index compared to all

of the random paths within the available vegetation with the same start and end points. The mean (SD)

of the centered rank in observed loops for average transition index was -1.59 (2.96); for number of nodes

was -1.88 (2.91) and for average edge length was 0.44 (2.23); in all cases, significantly different from 0

(T-Test, |T | > 3, p < 0.01). These results suggest that loop formation in trails may occur as a consequence

of selecting trails that have lower transition indices, thus promoting coherence.

2.3. Discussion

The trail networks of arboreal ants show how evolution shapes biological distributed algorithms to

respond to dynamic environments. Minimizing distance traveled is often considered the main objective in

wireless routing algorithms and ant colony optimization [131, 83, 37], since rapid communication is often

needed between any two nodes in the network. We showed that the trail networks of turtle ants instead

optimize the maintenance of a coherent trail by minimizing the total number of nodes, and by minimizing the

average transition index; optimizing the latter objective, we show, is NP-complete (Methods). In previous

work [143], we proposed a model for the algorithm used to maintain and repair networks. This algorithm did

not distinguish between minimizing the number of nodes and the distance traveled, since each edge had

equal length. Our results here show that further work is needed to develop an algorithm that captures the

role of physical variation in the environment.

Minimizing the transition index and the number of nodes contributes to maintaining the coherence

of the trail because both diminish the risk of losing ants from the trail. Like water flowing over a rocky stream

bed, turtle ants tend to find trails most conducive to the flow of ants. By avoiding nodes with high transition

indices, turtle ants reduce the chances of ants wandering off the path and laying pheromone trail that can

lead other ants also to leave the trail. Nodes with transition indices of 1 keep the trail on the same plant [3].

The vines and trees of the tropical dry forest tend to have long internode distances to reach the sunlight at

the edge of the canopy [146]. By staying on the same plant, ants are also led to resources at the edge of

the canopy, such as flowers that provide nectar.

The trail networks must also balance the tradeoff between exploration and coherence. Exploration

is necessary for the colony to construct trails [110, 71, 138, 19, 137, 135], search for new resources [147,

148, 149, 150, 151, 136] and repair breaks [3, 143, 133], and the connectivity of the vegetation (Table 2.1)

sets the probability that ants that leave the trail will return to another node on the trail. There appears to be

a constant probability of exploration at each node [3, 143], so the probability of leaving the trail accumulates
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with more nodes traversed. Thus, minimizing the number of nodes traversed reduces opportunities for the

ants to get lost.

Our results here suggest that, as in engineered networks [144, 145], the cost of including a node in

the turtle ant network may vary among nodes, because whether other ants follow an exploring ant that leaves

the trail at that node depends on the node’s physical configuration. The costs of additional nodes include

the loss of ants from the trail, and the pursuit of fruitless paths, which may detract from the colony’s ability

to distribute resources among its many nests, and make fewer ants available to recruit effectively when a

new food source is discovered. In addition, each node provides opportunities for encounters with other,

competing species traveling in the same vegetation [152, 153, 154]. Further work is needed to examine

variation among colonies [155] in how well they minimize the number of nodes, to learn how selection may

shape the process that determines how a trail network is constructed and maintained.

Finally, are there useful applications of the principle that variation in the environment provides useful

constraints on routing network design? Evolved algorithms operating in the natural world can use structure

in the environment to enhance coordination among distributed agents [156]. In engineering, taking into ac-

count the physical structure of the environment may improve the design of routing algorithms [157, 158,

159, 160, 161], for example, by reducing the search space of possible routing paths and steering network

construction away from parts of the terrain that are difficult to reach. This could be beneficial in applications

such as robot swarms, where distributed agents must coordinate in complex environments using a com-

munication backbone to explore new terrain, exploit of temporary resources, and maintain security against

intruders [162].

2.4. Materials and Methods

2.4.1 Observation of trail networks

The trail networks of three turtle ant colonies (Turtle Hill 460, Tejon 446, and Tejon 189) were ob-

served between 06/20/18 and 08/03/18 at La Estación Biológica de Chamela in Jalisco, Mexico. Tejon 189

was observed for 10 days from 6/22/208–6/28/2018 and again on 07/01/2018, 7/04/2018 and 8/3/2018.

Tejon 446 was observed for 11 days on 6/20/2018–6/28/2018 and again on 07/01/2018, 07/04/2018, and

08/03/2018; and Turtle Hill 460 was observed for 10 days from 06/21/2018–06/28/2018 and again on

07/02/2018, 07/05/2018, and 08/03/2018. Not every network was observed on each day. The colonies

appeared to be of about the same size, based on observations in comparison with previous work in which

size was estimated with mark-recapture measures [56], but here we did not measure colony size.
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The numbers of observation days were 10 for Tejon 189 and Turtle Hill 460, and 11 for Tejon 446,

for a total of 93 = (10 + 10 + 11)× 3 observed networks.

Networks were mapped using the same methods as in prior work [3], using visual inspection of the

paths the ants took through the vegetation. We mapped each node and edge traversed by ants and all

possible paths up to 5 nodes away from each node traversed by ants. Each node was assigned a number,

and enough nodes were marked, with small labels or stickers on a dead end branch near the node, to

identify all same nodes the next day. The initial map of a colony’s trail network included all nodes used by

the ants, and all nodes up to 5 nodes from each node on the path. The length of each edge was measured

with a ruler, including each edge connecting the nodes on the ants path and all nodes up to 5 nodes from

each node on the ants’ path. A transition index was assigned corresponding to each pair of edges entering

and leaving a node. The assignment of a transition index was based on a visual estimate of the number of

different trajectories that were available for ants to traverse the node. We were not able to make any direct

measurement of the amount of pheromone deposited.

The assignment of the transition index was made using the following criteria:

• TI–1 (Figure 2.1A): a node linking two edges on the same plant.

• TI–2 (Figure 2.1B): a node that links one plant to another along a trajectory through a node that is

likely to be the same for successive ants.

• TI–3 (Figure 2.1C): a node that links one plant to another plant with more than one possible trajectory

through the node.

• TI–4 (Figure 2.1D): a node that links one plant to another with many possible trajectories that is often

changed by conditions such as the wind.

In each day of observation, we recordedwhich edges and nodeswere used by the ants. As observed

previously (illustrated for a different set of 3 colonies [3]), each colony’s trail network changed which nodes

it used from day to day, although each day’s path conserved some parts of the previous day’s. In the course

of the observations reported here, the path of the ants never went outside the range of the 5 nodes around

the trail that were originally mapped. The number of nodes and edges observed in each network is shown

in Table 2.1.

2.4.2 Assigning directionality to edges

Experiments with marked ants show that ants tend to use particular routes from a nest [56], and

tend not to turn around on the trail. To account for this, for all edges we defined a direction relative to one
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Figure 2.4: Converting the network to the line graph. A) Original graph. Nodes correspond to junctions in
the vegetation, and edges correspond to links, such as a branch or stem, between junctions. B) Line graph.
Every edge in the original graph has a corresponding node in the line graph. Two nodes are connected in
the line graph if they correspond to two adjacent edges in the original graph. Transitions in the original graph
used in this example are highlighted in red and blue.

terminal; the outbound direction went away from it, and the inbound direction went towards it. We restricted

the analysis to paths that proceed in the outbound direction.

2.4.3 Modeling the transition index as a line graph

The transition index of a node describes the probability that successive ants will take the same

trajectory from an edge (u, v) through node v to edge (v, w). Thus, a transition index involving node v

depends on which incoming edge was used to reach v, and which outgoing edge was used to leave v.

To model the transition index, we used the line graph of G, where LG = (VL, EL). The nodes

VL = EG, and the edges EL = {((x, y), (y, z))|(x, y), (y, z) ∈ EG}. The line graph creates a node for each

edge in G and connects two nodes if they correspond to two adjacent edges in G. Every edge in the line

graph denotes a transition in the original graph; traversing the edge ((u, v), (v, w)) ∈ LG corresponds to

starting at u, going to v, crossing the junction at v, and then going to w. We assigned every edge in L a

transition index. Figure 2.4 illustrates this process. The line graph is used to compare the observed and

random networks, as described below.

2.4.4 Generating random trail networks

We compared the observed trail networks to random trail networks based on their average edge

length, total number of nodes, and average transition index. The random networks were simulated in the

graph made from the map of the paths used by ants and the surrounding vegetation up to five nodes from

the nodes used by the ants. The measures of number of nodes, edge length and transition index were those
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measured in the vegetation. The random trail networks may include loops, as did the observed networks.

We generated random trail networks as follows:

1. Input: Graph G = (VG, EG), terminals X ⊆ VG.

2. Create an empty graph R; add a random terminal x ∈ X to R.

3. Choose a random terminal x′ ∈ X that has not already been added to R.

4. Perform a random walk on G that starts at x′ and stops when it touches any node in R.

5. Add all edges and nodes touched by the random walk to R.

6. Repeat steps 3–5 until all terminals have been added to R.

2.4.5 Comparing observed and random networks

To compare the observed and random networks, we computed for each network, using the line

graph (Figure 2.4), the following three objectives: 1) Average edge length: the average length of all edges

in the network; 2) Total number of nodes: the total number of nodes in the network; and 3) Average transition

index: the average transition index over all transitions in the network.

For each objective, we computed a value of φants for the observed network and φ1, φ2, . . . , φn for the

n random networks. We measured the similarity between the observed network and the random networks

for that objective as the percentage of random networks that have a lower value for the objective:

100× |{φi|φi ≤ φants}|
n

. (2.1)

An observed network is most similar to a random network when its percentile is 50. The closer the percentile

is to 0, the better the observed network optimized the objective, and the closer the percentile is to 100, the

better the random network optimized the objective. This percentile-based approach is unit-less, making it

possible to compare performance for objectives that differ in the range of values.

We treated each comparison of the observed and simulated paths, drawn from observations on a

given day, as independent, because we compared each day’s path to a set of randomly generated paths

using the same number of nodes. The relation between the randomly generated paths and the observed

paths for each day was independent of those on any other day. We did not compare the observed paths from

one day to those of another day. The path used by the ants on one day was similar to the one used by the

ants on the previous day, perhaps because of the effect of the transition indices which generally remained

the same from day to day.
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For each colony (Tejon 189, Tejon 446, Turtle Hill 460), and for each objective (average length,

total nodes, and average transition index), we computed the similarity of each observed network to 100,000

random networks that connected the same set of terminals, using Equation (2.1).

Because the total number of nodes and the total edge length are correlated, we did not simul-

taneously compare total length and total number of nodes between random and observed trail networks.

Instead, we tested whether there was a statistically significant difference in total length between observed

and random trail networks with the same number of nodes. For each observation of one colony on one

day, we found all the randomly generated networks that had the same number of nodes as that observed

network (209 for Tejon 189, 1420 for Tejon 446, 221 for Turtle Hill). We then found the total lengths of all of

these networks, and used Equation (2.1) to evaluate how well each observed network optimized total length

compared to random networks with the same number of nodes.

2.4.6 Comparision of objectives and colonies

We used the non-parametric Scheirer-Ray-Hare two-factor ANOVA test [163] to test for effects of

objective, colony, and the colony x objective interaction on the percentiles of the observed networks com-

pared to random networks. We then applied post hoc Dunn’s non-parametric tests [164], using a Bonferroni

correction for multiple comparisons, with a significance threshold of p = 0.05.

2.4.7 Loops

We compared the average transition index and number of nodes in observed loops with loops that

were available in the underlying vegetation. A loop was defined as two or more outbound paths that start

and end at the same source and target nodes. For each observed loop, we computed all possible paths

in the vegetation between the corresponding source and target nodes. We ranked all paths based on the

average transition index of the path, and compared this to the rank of the average transition index of the

paths used by the ants. We repeated the same measure for total number of nodes and average edge length.

We computed the centered rank of each path used by the ants as follows: We ranked n available

paths in the vegetation, by the average transition index of nodes in the path, total number of nodes in the

path, or average length of edges in the path. The ranks of the paths are 1, 2, 3, . . . n, and the median rank is

rm = (n+1)/2. For each observed path, we computed its centered rank by subtracting the median rank from

that path’s rank. Using average transition index as an example, the centered rank is 0 when the observed

loop had the same average transition index as the median random loop, negative when the observed loop

has a lower average transition index, and positive when the observed loop has a higher average transition
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index. We performed a similar analysis for the total number of nodes and average edge length.

2.4.8 Connectivity

To calculate the connectivity of the vegetation (Table 2.1), we estimated how many nodes are re-

quired for an ant that leaves the trail to return to the trail. For each edge (u, v) connecting a node on the trail

to a node off the trail, we found the length, in number of nodes, of the path with fewest nodes from v back to

a node on the trail. We measured connectivity as the smallest number of nodes in a path back to the trail,

averaged over all edges (u, v) leading off the trail on all days.

2.4.9 Optimizing transition index is NP-complete

Here we show that the problem of constructing the foraging network that connects a given set of

terminals while minimizing the average transition index of the network is NP-complete. To do this, we start

by showing that finding the minimum average-weight path between two vertices in a graph is NP-complete.

In this problem, we are given a graph G = (VG, EG) and two vertices u, v ∈ V . The goal is to find a path

P = [(u, r1), (r1, r2), . . . , (rk, rk+1), (rk+1, v)] that minimizes the average edge length: 1

|P|
∑

e∈P w(e), where

w(e) defines the length of edge e. This problem differs from the classic shortest path problem, which seeks

a path with minimal total edge length.

The standard method for considering the complexity class of an optimization problem is to consider

the equivalent decision version of the problem: given a graph G = (VG, EG), two vertices u, v ∈ VG, and an

integer k, we ask: is there a path from u to v whose average weight is ≤ k?

Lemma 1. Finding the minimum average-weight path is NP-Complete.

Proof. First, we show that this problem is in the class NP. If we are given a path from u to v, we can verify

that the path is a valid u-v path, and that the average edge weight is ≤ k. This certificate will clearly be of

polynomial length, and we can verify that it is correct in polynomial time.

Next, we show that the problem is NP-hard. We proceed via reduction from the Hamiltonian path

problem, which is NP-Complete. Given a directed graph G = (VG, EG), the directed Hamiltonian path

problem seeks a path that touches every vertex v ∈ VG exactly once. We construct a graph G′ as follows:

G′ contains all of the vertices in G along with two additional vertices, s and t. We assign a weight of 1 to all

of the original edges in G. We add a directed edge from s to every vertex v ∈ VG, and we add a directed

edge from every vertex v ∈ VG to t. We assign a weight of 2 to all edges that include either s or t.
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The smallest possible average edge weight for any path from s to t is 3 + |VG|
|VG|+ 1

, and such a path

exists if and only if G has a directed Hamiltonian path.

The reduction requires adding 2 new nodes, and 2|V | new edges to G. Thus the reduction clearly

takes only polynomial time.

We now use Lemma 1 to show that optimizing average transition index is NP-Complete. Let L =

(VL, EL) be a graph whose edge weights correspond to transition indices, which we represent using the line

graph (Figure 2.4). Given a set of terminals X ⊆ VL, we seek to find a subtree FX ⊆ L that minimizes the

average value of all edge weights in FX . We require that FX be connected without cycles to represent the

fact that cycles in turtle ant trails are typically pruned.

Once again we consider the decision problem: given a line network L = (VL, EL), a set of terminals

X, and an an integer k, does L contain a subtree FX whose average weight is ≤ k?

Lemma 2. Finding the subtree FX that optimizes average transition index is NP-Complete.

Proof. First, we prove that the problem is in NP. Given VL, X, k, if we are presented with a subgraph FX

as a certificate, we can verify that FX is a valid solution. We check that FX is valid subgraph, that FX is

connected, that FX contains every terminal node X, and that the average weight of the edges in F is ≤ k.

Clearly the size of FX is polynomially bounded, and we can verify that FX is a valid solution in polynomial

time.

To show that the problem is NP-hard, we proceed via reduction from the minimum average-weight

path problem above. Given G and vertices u and v, we simply treat G as the line graph (L), and designate

terminals X = {u, v}; this means FX is simply a u-v path. We seek the trail that optimizes the average

transition index between terminals u and v. By construction, this is the minimum average-weight path from

u to v in the line graph, meaning there is a subgraph FX with average weight of ≤ k if and only if the original

graph has a u-v path with average edge weight ≤ k. Further, the reduction clearly takes only polynomial

time.

2.5. Data Availability Statement

All data collected and analyzed will be archived at Stanford Digital Repository at the Stanford Li-

braries. Python code is available at: https://github.com/DiODeProject/SteinerAnts.
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Chapter 3

Neural Arbors are Pareto-Optimal

The problem of designing a routing network to efficiently transport resources is a fundamental prob-

lem in both engineering [17], and in natural systrems such as slime molds [165] and bacterial colonies [166].

In the two previous chapters, I described aspects of the distributed routing algorithm that turtle ants have

evolved to navigate between nests and food sources, including design principles that influence the colony’s

choice of nodes and edges. In this chapter, I extend my study of biological routing networks by exploring

how neural arbors manage trade-offs between competing design principles. I demonstrate the value of

using neural arbors as an inspiration for network design algorithms, and I highlight the value of an algorith-

mic model of neural arbors for producing novel hypotheses and explanations for variation in neural arbor

morphologies.
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Abstract

Neural arbors (dendrites and axons) can be viewed as graphs connecting the cell body of a neuron

to various pre- and post-synaptic partners. Several constraints have been proposed on the topology of these

graphs, such as minimizing the amount of wire needed to construct the arbor (wiring cost), and minimizing

the graph distances between the cell body and synaptic partners (conduction delay). These two objectives

compete with each other — optimizing one results in poorer performance on the other. Here, we describe

how well neural arbors resolve this network design trade-off using the theory of Pareto optimality. We

develop an algorithm to generate arbors that near-optimally balance between these two objectives, and

demonstrate that this algorithm improves over previous algorithms. We then use this algorithm to study how

close neural arbors are to being Pareto optimal. Analyzing 14145 arbors across numerous brain regions,

species, and cell types, we find that neural arbors are much closer to being Pareto optimal than would be

expected by chance and other reasonable baselines. We also investigate how the location of the arbor on the

Pareto front, and the distance from the arbor to the Pareto front, can be used to classify between some arbor

types (e.g., axons versus dendrites, or different cell types), highlighting a new potential connection between

arbor structure and function. Finally, using this framework, we find that another biological branching structure

— plant shoot architectures used to collect and distribute nutrients — are also Pareto optimal, suggesting

shared principles of network design between two systems separated by millions of years of evolution.

3.1. Introduction

Both man-made and biological transport networks face trade-offs in their design. While resources

can be spent to increase the speed or reliability of transport, this often comes at a cost. For example, in

road networks, users wish to minimize the travel time to get from one point in a city to another, but this

goal conflicts with the practical need to minimize costs in building infrastructure. In such cases, engineers

typically seek to design network topologies that achieve the best “bang for the buck”. Here, we analyze how

well neural arbors resolve a similar performance-versus-cost trade-off.

Neural arbors (dendrites and axons) can be viewed as transport networks rooted at the cell body

that process and relay information from one neuron to another [167]. Prior work has proposed competing

constraints on the topology of these networks [168]. For example, for both dendrites and axons, the principle

of wiring economy states that the total length of an arbor should be minimized [169, 170, 171, 172, 173, 174];

total wire is a measure of network cost and is especially important when space is limited or when wire is a

commodity [175]. On the other hand, Cajal’s principle of conduction delay states that, for axons, the distance
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or time required to propagate an action potential from the soma (cell body/root) to downstream post-synaptic

partners should be minimized for efficient signal propagation [176]. For dendrites, minimizing conduction

delay similarly allows for efficient propagation of dendritic action potentials [177] or back-propagating action

potentials [178], and it minimizes the effects of attenuation (weakening of the signal as it travels from a

synapse to the soma) [179].

The two topologies that minimize wiring economy and conduction delay, respectively, are often

different (Figure 3.1A). A Steiner tree [140] minimizes wiring economy, but this structure could have poor

conduction delay for some nodes. On the other hand, the Satellite tree, an arbor that connects the cell

body directly to each synaptic partner via a straight line would optimally minimize conduction delay, but this

structure would be very inefficient for wiring economy.

Here, we use the theory of Pareto optimality to analyze how well neural arbors resolve this network

design trade-off. Intuitively, a network is Pareto optimal if there does not exist an alternative topology that

improves on one objective without hurting the other. Given enough evolutionary pressure and genetic di-

versity, we hypothesize that mechanisms generating such sub-optimal topologies would be eliminated from

the population [59]. The only topologies that would remain in the population are those that lie on the Pareto

front, consisting of all topologies that are Pareto optimal.

We formalize this problem, develop a graph-theoretic algorithm to generate close to Pareto optimal

topologies, and we evaluate how well neural arbors come to realizing Pareto optimality. In particular, we

analyzed the structure of 14145 arbors from a variety of species, cell types, and brain regions and find

that most arbors lie on or very close to the Pareto front, and that this is highly unlikely to occur by chance

(as measured by three baseline graph models that do not seek to directly optimize either wiring cost or

conduction delay). One advantage of this approach is that each individual arbor can be associated with a

single parameter (α ∈ [0, 1]), indicating how the arbor weighs or prioritizes each objective. We find that the

α values can be used to classify some functional categories of neurons based on their structure (e.g., axons

versus dendrites, or different cell types or neurotransmitter types). Finally, to show the generality of this result

to other biological branching structures, we re-analyze tracings of hundreds of plant shoot architectures and

find plants are also Pareto optimal. To our knowledge, this is the first quantified comparison between plant

architectures and neural arbors based on their ability to trade-off two common network design criteria.

3.2. Related work

Since Ramon y Cajal’s seminal work [176], the principle of wiring economy has served as an im-

portant constraint on the structure of neural circuits. In addition to constraining arbor morphology, wiring
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Figure 3.1: Illustration of Pareto optimal trees and the Pareto front. A) For a given set of points (green),
there are several possible trees that can be formed, each optimizing wiring cost and conduction delay differ-
ently. The black node indicates the root (cell soma) of the arbor, and the red points indicate branch points.
The Steiner tree minimizes wiring cost. The Satellite tree minimizes conduction delay. Intermediate trees
lie in between. B) The Pareto front defines a set of trees for which improving upon one objective requires
a loss in the other objective. The value of α ∈ [0, 1] indicates a prioritization weight that the arbor places
on one objective versus the other. We evaluate how Pareto optimal a given tree (red ‘X’) is by computing
the distance from that tree to the Pareto front. C–H) Example Pareto optimal trees generated by our greedy
algorithm using different values of α. The black dot is the soma, the green dots are synapses, brown dots
are Steiner points, and red lines are edges. The axes are coordinates, in microns.

cost has been used to predict the placement of the cell body within its arbor [169] and the placement of

multiple cell bodies within a network [170, 171, 180]. Wiring economy has also been used to help ex-
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plain why certain neurons tend to restrict growth to a 2-dimensional plane, even when allowed to grow

in 3-dimensions [181]. There are also other measures that constrain arbor topology, including neuron den-

sity [182], space-filling [183, 184, 185], and network connectivity measures, such as effective radius, cluster-

ing [186], and minimizing refractory delay [187]. Here, we focus primarily on wiring economy and conduction

delay to quantify how well arbors balance between a general optimization trade-off without using a model

that requires a large number of parameters to capture additional biological constraints; we later discuss

deviations in the context of other potential constraints.

There are also several features that affect conduction delay, including wire radius and myelina-

tion [188, 189, 190]. In particular, prior models predict a 3/2-power law relationship between the radii

of mother versus daughter wires, a model which has been validated theoretically [191] and experimen-

tally [192]. Additionally, allometric scaling laws have made predictions about what shapes general biologi-

cal transport networks take on to optimize transport efficiency as a function of volume [193, 194]; similarly,

Banavar et al. [195] study metabolic scaling in source-directed transport networks and suggest that efficient

topologies minimize the mean distance from the source to the sinks; i.e., the tree is Satellite-like. These

studies, however, do not study general trade-offs between efficiency of transport and network construction

costs, as we do here. Radius measurements of individual arbor segments are unfortunately not broadly

available across arbors from multiple cell types, species, and brain regions, and thus we consider wire as

1-dimensional here.

Multi-objective optimization for understanding how wiring length and conduction delay are balanced

has also been considered by prior work [173, 174]. These studies model arbors as spanning trees, which do

not allow the addition of branch points, whereas our model uses Steiner trees, which generalize spanning

trees by also allowing branch points. Branch points allow us to more realistically and accurately characterize

possible arbor topologies. There are also other differences in our work. First, we compare to three baselines

topologies to gauge the significance of achieving Pareto optimality. Second, we analyze many more arbors

(14145 arbors across numerous species, brain regions, and cell types, compared to only 10 spiny cell axons

and 9 basket cell axons from the cat visual cortex, as previously done [174]). Third, we analyze a subset of

arbors with exact synapse locations known, rather than simply the arbor tracings. Fourth, we analyze both

dendrites and axons, whereas prior work studied only axons [174] or dendrites [173].

In the theoretical computer science community, these two objectives have also been studied under

different guises. For example, wiring length minimization is an instance of the Euclidean Steiner tree prob-

lem [196, 197, 198]. This problem takes a set of points in Euclidean space as input, and seeks to build a

tree connecting all the points in such a way as to minimize the total length of the tree. In contrast, we include

a second competing function (conduction delay) to jointly optimize. More related is the problem of finding
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a light approximate shortest-path tree (LAST) [199, 10, 200]. Here, the goal is to find a spanning tree on

the set of input points whose total weight is not “too high” while also placing each point not “too far” from a

pre-designated root. Our work solves a similar problem parameterized differently, and again with the option

of adding branch points along the arbor. Empirically, we also show that our algorithm produces trees that

are closer to Pareto optimal than LAST trees.

Finally, our work also contributes to the class of multi-objective minimum spanning tree problems.

Finding Pareto optimal solutions to these problems is generally NP-hard, and several evolutionary algorithms

have been proposed to generate approximate solutions [201, 202]. These problems typically consider ob-

jective functions that can be locally decomposed, whereas one of our objective functions (conduction delay)

is a global property of the tree.

3.3. Theory

3.3.1 A framework for analyzing neural arbors as transport graphs

As input, we are provided a set of points P = {p1, p2, . . . , pn; r} ∈ R3. The points pi represent the

3D locations of the n synapses that the arbor connects to (pre-synaptic for dendrites, and post-synaptic for

the axon). The point r represents the location of the cell body. Our goal is to output a tree TP = (VP , EP)

rooted at r that connects the points pi, where VP contains all points in P and can include additional branch

points not present in the input for more efficient connectivity. The edges EP ⊆ VP × VP are such that TP

is a tree, i.e., it is connected with no cycles. Neural arbors typically do not pre-define the precise locations

of synaptic contacts ahead of time, but rather connect to potential partners as they grow [203, 204]. Our

model is not meant to characterize the process by which neural arbors grow and branch. Rather, given how

a neural arbor branched, our model evaluates how optimal the arbor morphology was compared to all the

possible morphologies that could have been used to connect the cell body to the synapses pi.

We evaluate the wiring cost and conduction delay of the arbor as follows. For edge (u, v) ∈ EP ,

define the edge length, l(u, v) to to be the Euclidean distance between u and v. For two points u, v ∈ VP ,

define the graph distance d(u, v) to be the length of the shortest path from u to v using the edges EP .

The wiring cost is the total length of all edges in the tree:

W (TP) =
∑

(u,v)∈EP

l(u, v). (3.1)
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The conduction delay is the sum of the graph distances from the root to each synapse:

D(TP) =
∑

pi∈P\{r}

d(r, pi). (3.2)

The tree that minimizes wiring cost alone is the Steiner tree (Figure 3.1A), which, unlike a minimum

spanning tree, allows for branch points that may help reduce the total length of the arbor. There are efficient

algorithms to compute a minimum spanning tree, but finding the optimal Steiner tree for a given set of points

in 3D space is NP-hard [205]. The tree that minimizes the conduction delay alone is the ‘Satellite’ tree,

where each synapse is connected via a straight line to the root of the tree (Figure 3.1B). We compare trees

built on the same set of input points, and thus we do not need to normalize either objective by the number

of synapses, n.

3.3.2 Defining Pareto optimal trees

It is generally impossible to find a tree that simultaneously minimizes both wiring cost and conduction

delay because such a tree may not exist. One way to define the concept of an ‘optimal tree’ then is using

the theory of Pareto optimality. Intuitively, a tree is Pareto optimal if no other tree on the same set of points

has a lower value for both objectives, or a lower value for one objective without hurting the other objective.

Formally, we say a tree T1 partially dominates a tree T2 (denoted T1 ⪯ T2) if at least one of the two conditions

hold:

1. W (T1) ≤W (T2) and D(T1) < D(T2); or

2. W (T1) < W (T2) and D(T1) ≤ D(T2)

This means that T1 performs equal to or better than T2 no matter how one prioritizes the two

objectives. We say a tree T is Pareto optimal if it is not partially dominated by any other tree on the same

set of points [206].

To generate Pareto optimal trees, we propose a simple linear interpolation between the two objec-

tives, where the goal is to minimize the Pareto cost:

min
TP

αW (TP) + (1− α)D(TP), (3.3)

where TP is a tree that connects the cell body (r) to the synapses (p1, p2, . . . , pn). Cunha and Polak [207]

prove that finding a tree that minimizes Equation (3.3) is equivalent to finding a Pareto optimal tree. Here,

α denotes how much weight is placed on one objective versus the other.
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To generate the Pareto front (Figure 3.1B), we need to find the set of trees that minimize Equa-

tion (3.3) for each value of α ∈ [0, 1]. If α = 0 the optimal tree is the Satellite tree. If α = 1 the optimal

tree is the minimum Steiner tree. To generate optimal trees for intermediate values of α, we developed an

algorithm, as described next.

One advantage of this formulation is that each neural arbor can be associated with global arbor

descriptor (its valueα) that characterizes the trade-off between the two objectives that the arbor employs. We

can then compare the distribution of these α values across arbors of different types to quantify morphological

differences.

3.3.3 An algorithm for generating Pareto optimal trees

To generate trees that lie on the Pareto front, we used a greedy algorithm that allows for branch

points, which were not considered by prior work [173, 174]. The algorithm takes as input P and α and

outputs TP that attempts to minimize Equation (3.3).

The algorithm starts with the root r in the tree, and all other points (nodes) outside the tree. In each

step, the algorithm considers all possible edges between a node inside the tree and a node (synapse) outside

the tree, and picks the edge that minimally increases the objective in Equation (3.3). When the algorithm

adds an edge, it adds k Steiner nodes equidistant along the edge, which may be used in subsequent steps

as branch points. This process continues until all synapses have been added to the tree. In experiments,

we set k = 10.

Figure 3.2 illustrates five steps of this process. Importantly, this algorithm is centralized and is

designed to generate a near-optimal Pareto front that can be used to evaluate the optimality of neural arbors.

This algorithm is not meant to mimic the distributed process by which neural arbors grow. We do not derive

approximation bounds for this algorithm; however, in Results we show that this algorithm performs well in

practice.

3.3.3.1 Reducing the time complexity of the greedy algorithm

For arbors with thousands or tens of thousands of synapses this algorithm may not be very efficient

because of the large number of possible edges to consider in each greedy step. Specifically, there are

O((kn)2) edges to consider, where n is the number of unconnected points and k is the number of Steiner

points that we add along each edge. Here, we show that we can reduce the number of candidate edges to

consider in each step to O(kn) without affecting the quality of the solution generated by the algorithm.
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Figure 3.2: Illustration of the greedy algorithm. 1) The algorithm iteratively adds nodes to the tree, starting
with the root. 2) In each step, it considers all edges between a node currently inside the tree and a node
currently outside the tree. The edges considered are shown as dashed. 2a) It greedily adds the edge that
increases the cost of the tree by the lowest amount. 2b) Along the chosen edge, the algorithm adds k Steiner
points. In the example, k = 1, but in our implementation, we set k = 10. 3) The algorithm then repeats this
process with the updated tree until all nodes outside the tree have been added to the tree.

For each node u ∈ VP already added to the tree, define:

Close(u, TP) = argmin
v
{l(u, v) : v ∈ P \ VP},

i.e. the closest point to u that has not already been added to the tree. Then, define:

Cost(u, v, TP , α) = α
(
W (TP) + l(u, v)

)
+ (1− α)

(
D(TP) + l(u, v) + d(u, r)

)
,

i.e. the value of the objective, as defined by Equation (3.3), that would result from adding edge (u, v) to TP .

85



Lemma 3. Fix u ∈ VP ; then Cost(u, v, TP , α) is minimized by picking v = Close(u, TP) over all possible

choice of v (nodes not already added to the tree).

Proof. Suppose u ∈ VP , v /∈ VP , and we add edge (u, v) to TP . The increase in wiring cost is α× l(u, v). By

definition, this is minimized if v = Close(u, TP). Whenwe connect v to u, the shortest path from v to r involves

going from v to u and then taking the shortest path from u to r. Thus, the increase in conduction delay is

(1−α)×d(v, r) = (1−α) (l(u, v) + d(u, r)). Because d(u, r) is unchanged by connecting v to u, the increase

in conduction delay is minimized by minimizing (1 − α) × l(u, v), which is minimized if v = Close(u, TP).

Thus, both objective functions are minimized by connecting u to Close(u, TP).

Thus, at every step, we do not need to consider all possible edges between a node inside the tree

and a node outside the tree. The optimal greedy step only involves edges of the form (u,Close(u, TP)), with

u ∈ VP . The full algorithm is shown in Algorithm 3.

Auxiliary data structures: To efficiently compute conduction delays, each node in the tree stores

its distance to the root. The root has distance 0 to itself. When we add a node v to the tree via edge (u, v),

we set d(v, r) to be l(v, u) + d(u, r). This way, we may access d(v, r) in constant time.

To efficiently compute pairs (u,Close(u, TP)), we store each node’s closest neighbors in a hash

table,H. In the hash table, a key is a node u currently in the tree, and its value is a list of potential neighbors

outside the tree, sorted by distance to u. Initially, we add the root r to H. Whenever we add a new point

(including a Steiner point), we add the point as a key in the hash table, and we compute the sorted distances

between the point and each point in P that has not yet been added to the tree. Given a node u, to compute

Close(u, TP), we iterate through the sorted listH[u] until we find a node that has not been added to the tree;

we then remove all the nodes through which we iterated, including the node we choose, from the sorted list.

Rather than re-computing candidates at every step of the algorithm, we maintain a sorted list of

triplets:

Candidates = {(Cost(u,Close(u, TP), TP , α), u,Close(u, TP))|u ∈ TP}.

When we add a node v to the tree, we add v to H and use H[v] to compute Close(v, TP). We then

compute how much the Pareto cost of the tree would increase if we add the edge (v,Close(v, TP)). This is

equal to:

86



Cost(v,Close(v, TP), TP , α) = α× l(v,Close(v, TP)) + (1− α)× (l(v,Close(v, TP)) + d(v, r)).

We then add the triplet (Cost(v,Close(v, TP), TP , α), v,Close(v, TP)) to Candidates, which can be

done in log(n) time since Candidates remains in sorted order. Later, when we want to find the pair

(u,Close(u, TP)) whose addition would increase the cost of the tree by the smallest amount, we simply

pop the first element from Candidates.

After adding node v to the tree, any triplet of the form (Cost(u, v, TP , α), u, v) ∈ Candidates involving

v and any u ∈ TP is no longer a valid candidate because v is no longer outside the tree. Thus, we remove

all such triplets from Candidates, and find the new candidate involving each u that was removed. To do this,

we compute Close(u, TP) (which can be done efficiently using H) and Cost(u,Close(u, TP), TP , α) and add

the triplet (Cost(u,Close(u, TP), TP , α), u,Close(u, TP)) to Candidates (which, again, can be done in log(n)

time).

Running time: There are n loop iterations; each iteration identifies which node to add to the tree

by examining the closest neighbors for the O(kn) nodes that have been currently added to the tree. When

adding this node, k + 1 nodes are added (including Steiner nodes). For each such node, we compute the

distance from the node to each node outside the tree (using a brute-force search that simply iterates through

every such pair of nodes and computes their Euclidean distance), and sort these distances. Thus, each step

of the algorithm takes O(kn+ kn log(n)) time, and the overall running time is O(kn2 log(n)).

To generate the Pareto front we apply the greedy algorithm to values ofα ∈ {0.00, 0.01, . . . , 0.99, 1.00}.

Examples of arbors generated by the algorithm for different values of α are shown in Figure 3.1C–H.

It remains unclear how close this algorithm gets to finding truly Pareto optimal trees. Minimizing

Equation (3.3) is NP-hard; however, some special cases are informative to look at in detail. For α = 0,

the algorithm will provably generate the optimal tree. At each step, the optimal greedy step will involve

connecting the root directly to the node outside of the tree that is closest to the root. Thus, the algorithm

will iteratively connect the root to each node until it produces the Satellite tree, which minimizes conduction

delay).

For α = 1, the optimal tree is the tree that minimizes wiring cost, which by definition is the Steiner

tree. In this scenario, the optimal greedy step will involve adding the shortest possible edge that connects

a node inside the tree to a node outside the tree. By construction, this means that even if the algorithm

ignores the Steiner points it will do no worse than Prim’s minimum spanning tree algorithm [208]. Thus, the

algorithm will generate a tree with a wiring cost no higher than the wiring cost of the minimum spanning tree,
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Algorithm 3 Generate Pareto Front (P, α)
1: TP ← empty graph
2: VP ← {r} # add root.
3: i← 1 # counter for loop iterations.
4:
5: while i < |P| do
6: # Generate candidate edges to add, and greedily choose the best one.
7: Candidates← {(Cost(u,Close(u, TP), TP , α), u,Close(u, TP)) : u ∈ VP}
8: (u, v)← argmin{Cost(u, v, TP , α) : (Cost(u, v, TP , α), u, v) ∈ Candidates}
9:

10: # Connect u to v with Steiner points along the edge.
11: VP ← VP ∪ {v, v1, v2, . . . , v10}
12: EP ← EP ∪ {(u, v1), (v1, v2), . . . , (v10, v)}
13:
14: i← i+ 1
15:
16: end while
17: return TP

which is itself provably within a factor of 2 of the wiring cost of the optimal Steiner tree [209]. In practice,

this gap is often much tighter (see e.g., Conn et al. [122], where a similar greedy algorithm was shown to

find trees within 5–6% of the Steiner tree for small sets of input points). To further evaluate the optimality

of this algorithm, we compare it against a brute-force algorithm [210] for point sets that are small enough to

generate the optimal spanning tree, and two other greedy heuristics [199, 200] on larger point sets.

3.4. Results

First, we demonstrate that our greedy algorithm outperforms other algorithms at generating near

Pareto optimal topologies. Second, we show that neural arbors lie much closer to the Pareto front than

expected by three baselines, and that this result is robust to different assumptions about the locations of the

synapses along the arbor. Third, we show that some functional categories of arbors can be differentiated

based on how they are structured. Fourth, we use this same network design framework to demonstrate that

plant arbors are also Pareto optimal.

3.4.1 The greedy algorithm effectively approximates the Pareto front

As mentioned above, finding Pareto optimal arbors (i.e., minimizing the Equation (3.3)) is NP-hard,

forcing us to consider heuristics for generating the Pareto front for large arbors. We first determined how

close to Pareto optimal arbors generated by our greedy algorithm were compared to the following three

competitor algorithms:
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1. Brute-force algorithm [210]: This algorithm simply enumerates all possible spanning trees and se-

lects the one that minimizes Equation (3.3) for a given value of α. There are nn−2 possible spanning

trees, where n is the number of input points. Thus, we only consider the brute-force algorithm for small

point sets (up to 8 points).

2. Khuller’s Light Approximate Shortest-Path Tree (LAST) algorithm [199]: Given a complete graph

G with root r and β > 1, Khuller’s algorithm starts with the minimum spanning tree M for G and

performs a depth-first search on M starting from r. When the algorithm visits a node u, if the current

distance from u to r is more than β times the length of the edge from u to r, it updatesM by connecting u

to r and removing the edge from u to its previous parent. The algorithm returns the modified version of

M that results after visiting each node in the depth-first search. The result is a tree whose conduction

delay is provably at most β times the optimal conduction delay, and whose wiring cost is provably

at most
(
1 +

2

β − 1

)
-times the optimal wiring cost. Because our problem setup takes α ∈ [0, 1] as

an input, to apply Khuller’s algorithm, we must map α to a value of β > 1. We find that setting

β = 1+

√
2αW ∗

(1− α)D∗ gives a tree that minimizes Equation (3.3) and retains the algorithm’s theoretical

bounds on the wiring cost and conduction delay. Here,W ∗ is the wiring length of theminimum spanning

tree of G, and D∗ is the conduction delay for the Satellite tree. See Methods for derivation of this

mapping.

3. Karger’s algorithm [200]: This algorithm is equivalent to our greedy algorithm without the use of

Steiner points. Comparison against this algorithm allows us to determine the value branch points

provide towards minimizing the joint objective. Like our algorithm, Karger’s algorithm has been used

in geometric settings [200], and has been used for studying neural arbors [173, 174].

None of these three algorithms add branch points. The comparison between our greedy algorithm

and these three algorithms thus also highlights the utility of branch points in designing Pareto optimal topolo-

gies.

For the test framework, we selected a set of n + 1 points (P) randomly from the space [−10, 10]3,

and one of these points was selected uniformly at random and designated to be the root (r). For each point

set, we varied α ∈ (0, 1) in step sizes of 0.01 and ran each algorithm above to generate a different Pareto

front. We then compared the three Pareto fronts generated by the algorithms by comparing how many trees

from each front were partially dominated by trees from one of the other fronts (Methods).
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3.4.1.1 Small point sets.

We first examined 411 point sets, each with between 5–8 points. For each point set, we generated

a Pareto front (99 trees, using different values of α ∈ [0, 1]) using the brute-algorithm algorithm, Khuller’s

algorithm, Karger’s algorithm, and our greedy algorithm. We computed a Pareto front using each algorithm;

we then compared the quality of these Pareto fronts to determine which algorithm generated the Pareto front

that was closest to optimal (Methods).

We find that only 7% of the trees generated by our greedy algorithm are dominated by some tree

generated by one of the other two algorithms. This is in contrast to 52% for the brute force algorithm, 56%

for Karger’s algorithm, and 77% for Khuller’s algorithm. The brute-force algorithm cannot be dominated

by either Karger’s or Khuller’s algorithms because neither of these algorithms allow branch points. Thus,

the brute-force algorithm is actually dominated by the greedy algorithm 48% of the time. The improved

performance of the greedy algorithm over brute-force highlights the value of using branch points in finding

Pareto optimal arbors.

3.4.1.2 Larger point sets.

Next, we examined 1632 point sets, each with 9–500 points. This size is too large for the brute-force

algorithm to run in a reasonable amount of time.

We find that only 13% of the trees generated by our greedy algorithm are dominated by some tree

generated by one of the other two algorithms. This is in contrast to 82% for Karger’s algorithm, and 99.8%

for Khuller’s algorithm. Thus, the greedy algorithm generates a more optimal Pareto front compared to

Khuller’s and Karger’s algorithms, which were previously used for this problem [173, 174]. Thus, the greedy

algorithm is a better heuristic than previous algorithms on this data, and its use of Steiner points allows for

more biological realism.

3.4.2 Neural arbors are Pareto optimal

Next, we used the greedy algorithm to test how close neural arbors were to being Pareto optimal.

We obtained 14145 3D arbor reconstructions from Neuromorpho (Methods). For each arbor, the location

of the root (r) was designated in the data, and the locations of the synapses (the pi) were assumed to lie

uniformly along the traced arbor (Methods). For each arbor point set, we applied the greedy algorithm for

values of α ∈ [0, 1] to generate the Pareto front. We then evaluated the wiring cost and conduction delay for

the actual neural arbor, and the distance of the arbor to the Pareto front (Methods). We also determined the

wiring cost and conduction delay for arbors generated by three baseline algorithms — Random, Centroid,
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Figure 3.3: Neural arbors are Pareto optimal. A–D) Example Pareto front analysis for four arbors: A) sen-
sory receptor cell from the mouse neocortex, B) sensory receptor cell from the mouse dorsal root ganglion,
C) amacrine cell from the human retina, and D) sensory receptor neuron from the mouse peripheral nervous
system. In each panel, the blue curve show the Pareto front generated using the greedy algorithm. The
red ‘X’ shows the location of the neural arbor, the green circle shows the location of the Centroid tree, the
purple triangles show the locations of the uniform random spanning trees (Random), and the aqua squares
show the locations of the Barabási-Albert trees. The x-axis is the log wiring length, and the y-axis is the log
conduction delay. Neural arbors lie much closer to the Pareto front compared to the other three baselines.
In panel D, the arbor is best explained by a value α = 0.03 (right-end of the Pareto front). To make its
Pareto front clear, we omit the baseline models and we do not use a log scale on either axis. E) Summary
of all 14145 arbors. For each arbor (x-axis), we plot the distance to the Pareto front for the neural arbor,
the Centroid tree, the average Random tree, and the average Barabási-Albert tree. The x-axis is sorted
according to the neural arbor’s distance to the Pareto front. Neural arbors tend to fall significantly closer to
the Pareto front than the other baselines.

and Barabási-Albert (Methods) — for the same point set to assess how likely it is for the arbor to fall near

the Pareto front by chance. These three models generate a tree TP for a set of points P; however, Random

and Barabási-Albert do not attempt to produce a tree with any geometric properties, unlike the Centroid tree.

We did not consider other geometric models to assess whether the optimizations made by neural arbors

could also be realized by non-geometric models by chance. For example, if in a model a node was simply

connected to its nearest-neighbor, this would implicitly optimize for wiring length.

Strikingly, we found that almost all neural arbors fell very close to the Pareto front. In Figure 3.3A–D,

we show example Pareto plots for four individual arbors. The Pareto front is shown in blue circles, with one

circle per value of α ∈ {0, 0.01, . . . , 0.99, 1.00}. We also mark the location of the neural arbor with a red ‘X’,

and the locations of the three baselines methods all generated using the same input point set.

We found that neural arbors fell much closer to the Pareto front than the three baselines. In Fig-

ure 3.3E, we plot the distances from the neural arbor to the Pareto front over all 14145 point sets. In this

plot, the y-axis is the log of the distance from the arbor to the Pareto front (lower means more optimal), and

the x-axis denotes the arbor number (ranging from 1 to 14145), ordered by distance. Of the 14145 point
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Table 3.1: Comparison of neural arbors to null models.

Model Success Rate (Binomial p-value) Average Ratio (T-Test p-value)

Centroid 0.08 (p < 10−322) 1.38± 0.20 (p < 10−322)
Barabási-Albert 0.0000207 (p < 10−322) 5.96 ± 2.36 (p < 10−322)

Random 0.00 (p < 10−322) 30.22± 20.06 (p < 10−322)

sets, 92.21% of the neural arbors lay closer to the Pareto front than the Centroid tree; 99.99% lay closer

than the Barabási-Albert tree; and 100% lay closer than the Random tree. Using a binomial test (Methods),

we find that the neural arbor is significantly more optimal than the three baselines (p < 10−322 in all cases).

Table 3.1 shows how often arbors generated by each null model were closer to being Pareto optimal than the

actual neural arbor (called the ‘Success Rate’). Also shown is the average ratio of the null model’s distance

to the Pareto front versus the neural arbor’s distance to the Pareto front.

The results above suggest that nearly all neural arbors lie closer to the Pareto front than other

baselines, but they do not describe howmuch closer. Over all point sets, the average distance ratio (distance

to the Pareto front for the baseline divided by distance to the Pareto front for the neural arbor) was 1.38±0.20

for the Centroid tree, 5.96±2.36 for the Barabási-Albert tree, and 30.22±20.06 for the Random tree. In other

words, on average, the neural arbors were at least 38% lower for wiring length, or at least 38% for conduction

delay, or both, compared to the Centroid tree; at least 496% lower than the average Barabási-Albert tree;

and at least 2922% lower than the average random spanning. Using a T-test (Methods), we find that the

neural arbors are lie significantly closer to the Pareto front than all baselines (p < 10−324), and thus achieve

better trade-offs between wiring cost and conduction delay than expected by chance.

3.4.2.1 Synapse locations in Neuromorpho

Neuromorpho provides line segment tracings of neural arbors, but it does not provide the exact

synapse locations along the arbor. Based on prior work [211, 212], we placed synapses uniformly along the

arbor at a rate of 1 synapse per 0.2microns for dendrites [212], and 1 synapse per 4microns for axons [211].

While these rates are likely not constant across all axons and dendrites and across all brain regions and cell

types, it provides a way to fairly compare all arbors, which is our primary objective here.

To confirm that our Pareto optimality results are not due to our choice of synapse spacing, we

performed the same analysis as described above, except we placed synapses uniformly at a 2x lower rate:

1 synapse per 0.4microns for dendrites, and 1 synapse per 8microns for axons. We analyzed a random set

of 5871 neural arbors and found that the neural arbor lies closer to the Pareto front than the Centroid tree

95.23% of the time, and closer than the Barabási-Albert tree and the random spanning tree 100% of the time
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Figure 3.4: Modifying synapse locations in Neuromorpho arbors. We ran the same analysis as de-
scribed above after changing the spacing between synapses to be 0.4 microns for dendrites and 8 microns
for axons. We find similar Pareto optimality as we did under our original spacing parameters.

(p < 10−322 in all cases; Figure 3.4).

3.4.3 Pareto optimality of arbors with known synapse locations

We collected a small set of manually traced arbors with synapse locations precisely identified using

a fluorescence synapse labeling technique [213].

These arbors were all from the mouse somatosensory cortex and included 7 dendrites and 1 axon.

An example of one arbor is shown in Figure 3.5A–B. For each arbor, we generated the Pareto front using

input points only corresponding to the cell body and the identified synapses along the arbor. We found that

the neural arbor lied very close to the front, and significantly closer than the baseline models (Figure 3.5C–

F). On average, the neural arbor was 1.28 times closer to the Pareto front than the Centroid tree, 6.81 times

closer than the Barabási-Albert tree, and 25.87 times closer than the Random tree.
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Figure 3.5: Analysis of Pareto optimality for arbors with tagged synapse locations. A) 3D image of
a partially reconstructed neural arbor. The large red circle in the middle is the cell body. The red lines are
the dendrite wiring, and the green dots are the synapse locations. B) A 2D projection of the traced arbor.
The large black circle is the cell body, the green dots are the synapses, and the red lines are the edges that
trace the dendrite. C–F) Pareto fronts for four arbors. As with the Neuromorpho arbors, the neural arbor is
significantly closer to the Pareto front than the baseline models.

94



This suggests that our results are not likely a consequence of howNeuromorpho neurons are traced,

nor how we placed synapses along the Neuromorpho arbor.

3.4.4 Classifying neural arbors by their structure

Are functional differences between arbors reflected in their structure? Here, we study two questions.

First, are arbors from different biological categories equally close to being Pareto optimal? Second, do

arbors from different biological categories have significantly different values of α (i.e., do they weigh wiring

cost and conduction delay differently)? Uncovering such relationships could be used to hypothesize about

unknown function given structure.

We first associated each arbor with a biological category based on the type of arbor (apical dendrite,

basal dendrite, or axon), the cell type of the neuron (e.g., Purkinje versus granule), or the neurotransmitter

type used by the cell (e.g., glutamatergic versus GABAergic). See Table 3.2 for full list of categories. We

then associated each arbor with two values: its distance to the Pareto front (Methods, Equation (3.5)), and

a value of α ∈ [0, 1] that comes closest to matching its topology (Methods, Equation (3.6)). Below, we ask if

there are systematic differences in these two values for arbors in one category versus another. See methods

for formal definition for how to calculate α for a data-derived arbor.

3.4.4.1 Arbor type.

The distance to the Pareto front was smaller for apical dendrites (1.01 ± 0.10) and basal dendrites

(1.01± 0.02) compared to axons (1.13± 0.14) (Figure 3.6A). Error (±) values represent standard deviations.

Using Welch’s T-test on the null hypothesis that the average value of this distance is the same, this differ-

ence was significant (p < 10−324). One possibility for why axons may lie further from the Pareto front than

dendrites is that there is a potential third objective, such as space-filling, that axons also need to prioritize

(Discussion).

Axons, however, have higher values of α than dendrites: 0.86±0.18 for axons versus 0.26±0.30 for

apical dendrites, and 0.52±0.30 for basal dendrites (Figure 3.6B). UsingWelch’s T-test on the null hypothesis

that the average value of α is the same every pair of groups, we find that each pair of groups (axons vs apical

dendrites, axons vs apical dendrites, and apical dendrites vs basal dendrites) are significantly different from

each other (p < 10−324 in all cases).

Thus, apical dendrites appear to prioritize conduction delay over wiring cost; basal dendrites take

on intermediate values of α with a more even weighting of both objectives; and axons appear to prioritize

wiring cost over conduction delay. How much of this difference is driven by differences in the assumed
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Table 3.2: Arbor categories and sample sizes.

Category # of arbors

Arbor type
apical dendrite 3764
basal dendrite 3187
axon 6361

Cell type
amacrine 49
basket 149
chandelier 35
fast-spiking 138
golgi 33
granule 1103
interneuron 1341
martinotti 27
mitral 17
neurogliaform 28
projection 72
purkinje 10
pyramidal 3971
sensory receptor 380
stellate 61

Neurotransmitter type
cholinergic 192
GABAergic 269
glutamatergic 266
nitrergic 311
serontonergic 95

spacing between synapses along the two arbor types? We studied a small set of arbors (119 axons, 47

apical dendrites, and 53 basal dendrites), and placed synapses at a rate of 1 synapse per 4 microns along

both axons and dendrites. We find that the average value of α is 0.87± 0.13 for axons, 0.46± 0.18 for apical

dendrites, and 0.37± 0.24 for basal dendrites. This provides evidence that even with similar spacing, axons

and dendrites prioritize the two objectives differently.

3.4.4.2 Cell type.

Here, we studied differences in arbors belonging to one of 15 well-studied cell types (Figure 3.6C–D;

Table 3.2).

The cell types closest to the Pareto front were Golgi cells (1.01 ± 0.03), granule cells (1.01 ± 0.04),

and projection cells (1.01 ± 0.04) (Figure 3.6D). By contrast, the cells that lied furthest to the Pareto front

included amacrine cells (1.29± 0.65) and neurogliaform cells (1.28± 0.86) (Figure 3.6C). The cell types with

the most extreme α values (i.e., close to 0 or 1) were Golgi cells (0.13± 0.32), martinotti cells (0.30± 0.41),
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Table 3.3: Classifying neurotransmitters by structure.

Neurotransmitter Average scaling distance to Pareto front Average value of α

Cholinergic 1.107± 0.051 0.90± 0.11
Gabaergic 1.136± 0.224 0.65± 0.41

Glutamatergic 1.089± 0.072 0.84± 0.22
Nitrergic 1.003± 0.003 0.24± 0.18

Serotonergic 1.106± 0.132 0.96± 0.06

amacrine cells (0.75±0.32), and stellate cells (0.74±0.33). These results are summarized in Figure 3.6C–D.

While neuroanatomists have long appreciated the visual diversity of arbors from different neural cell

types, our work quantifies and provides a signature for some of these differences based on a simple trade-

off principle. Potential avenues for further work may involve comparing more detailed aspects of these cell

types, such as dendritic signaling, to assess why different types of arbors may prioritize one objective over

the other.

3.4.4.3 Neurotransmitter types.

Here, we grouped arbors into one of five classes of neurotransmitter types that the corresponding

cell releases (Figure 3.6E–F, Table 3.3).

Nitrergic neurons lay closest to the Pareto front (1.003± 0.003) and had significantly smaller values

of α (0.24±0.17), indicating a tendency towards optimizing for conduction delay over wiring cost. Other neu-

trotransmitter types lay further from the Pareto front — glutamatergic (1.09±0.07), serotonergic (1.11±0.13),

cholinergic (1.11±0.05), GABAergic neurons (1.14±0.22) (Figure 3.6E). GABAergic neurons tended exhibit

intermediate α values (0.65 ± 0.41), whereas the other neurotransmitters generally had values of α ≥ 0.84

— glutamatergic (0.84 ± 0.22), cholinergic (0.90 ± 0.11), and serotonergic (0.96 ± 0.06). The fact that we

find systematic clustering of α values for arbors of different neurotransmitter types shows the value in using

the Pareto front location to classify neural arbors by function. Curiously, nitrergic neurons are unique topo-

logically: they are significantly closer to being Pareto optimal than any of the other neurotransmitters, and

they prioritize minimizing conduction delay much more strongly than other neurotransmitters. Connections

between structure and function of these neurons may merit deeper investigation.

We also found a positive correlation between an arbor’s distance to the Pareto front and the arbor’s

α value (R = 0.42 using Pearson’s correlation coefficient; p < 10−324 using a permutation test). In other

words, the more strongly a neuron emphasized minimizing wiring cost, the further it lay from the Pareto

front. This correlation is positive within every category of arbors we studied (Table 3.2), and the correlation

is significantly different from 0 for every category (p < 0.005 in all cases using a permutation test).
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These results show that certain categories of arbors can be classified using a single value (α),

indicating how the arbor trades-off between wiring length and conduction delay. Additional topological de-

scriptors may further help classify these arbors [182]. Our results suggest that during evolution, natural

selection may fine-tune arbor growth strategies based on functional requirements, while still following basic

design templates that generate Pareto optimal arbors.

3.4.5 Similarities in branching patterns of neural arbors and plant architectures

Nature is abound with branching structures, and it is natural to ask whether other such networks

exhibit a similar cost-versus-performance trade-off.

Conn et al. [122] recently identified wiring cost and conduction delay as important design principles

constraining plant shoot (above-ground) architectures. Here, synapses are analogous to leaves, and the

soma is analogous to the base/root of the plant. Wiring cost for plants corresponds to the amount of re-

sources (e.g., carbon) used to build the architecture. Conduction delay corresponds to a measure of the

nutrient transport efficiency (e.g., sugars, water) from the leaves to the root system, and vice-versa. Conn et

al. scanned 557 plant architectures (across three species, several growth conditions, and multiple develop-

mental time-points). From each architecture, they extracted the 3D locations of the leaf points (p1, p2, . . . , pn)

and the root (r). Using these points, as well as a skeleton tracing of the plant architecture, they showed that

plants developed mechanisms to generate Pareto optimal architectures. Here, we re-analyzed their data to

compare neural arbors with plant architectures. Specifically, for the set of input points from each plant scan,

we varied α ∈ [0, 1] to generate the Pareto front using the greedy algorithm, and computed the distance to

the Pareto front for the plant architecture, as well as the three baseline methods.

Overall, we find that plant architectures are also Pareto optimal (Figure 3.7). We confirm that plant

architectures lie closer to the Pareto front than the Centroid tree 96.95% of the time, closer than the Random

tree 97.65% of the time, and closer than the Barabási-Albert tree 96.37% of the time (Figure 3.7A). Using

a binomial test (Methods), we find that this proportion is statistically significant for all three baselines (p =

4.59 × 10−136, p < 10−324 and p = 5.0 × 10−324, respectively). However, the distribution of α values that

represent neural arbors and plant architectures was quite different. The average value of α that best explains

plant architectures is 0.25±0.14, as opposed to 0.64±0.35 for neural arbors, indicating that plant architectures

tend to prioritize minimizing conduction delay more than wiring cost (Figure 3.7B).

Interestingly, we find that while neural arbors tend to prioritize minimizing wiring cost, plant shoot

architectures tend to prioritize minimizing conduction delay (Figure 3.7). We speculate that for plants, space

may not be as constrained as for neural arbors packed in the brain, and thus it is possible that wiring
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Figure 3.6: Structure-function differences in neural arbors. A–B) We categorize arbors in three cate-
gories. For each category (x-axis), we plot the distribution of the distances (y-axis) to the Pareto front for
arbors in each category in panel A. In panel B, we show a letter plot depicting the distribution of α values for
arbors in each category. The middle bar of the letter plot shows the median of the distribution, and the two
innermost boxes show the 25th and 75th percentiles respectively; the next two boxes show the 12.5th and
87.5th percentiles, respectively, and so on. Diamonds show individual outliers. C–D) Same analysis with
arbors grouped by cell type. E–F) Same analysis with arbors grouped by neurotransmitter type.
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A B

Figure 3.7: Plant architectures are Pareto optimal but exhibit different trade-offs than neural arbors.
A) The distance to the Pareto front for each plant architecture versus each baseline models. Like neural
arbors (compare to Figure 3.3E), plant shoot architectures tend to lie very close to the Pareto front. B)
Comparison of α distributions between neural arbors and plant arbors. Low values of α indicate prioritization
of conduction delay, and high values indicate prioritization of wiring cost. The majority of neural arbors
prioritize wiring cost, whereas plant arbors are biased towards prioritizing conduction delay.

conservation is more important to neurons than plants. Nonetheless, the fact that plants and neurons follow

similar design principles was an unexpected result, especially since they are separated by millions of years

of evolution.

3.4.6 Analysis of Arabidopsis architectures

In follow up work, Conn, et. al. show that the Pareto-optimality framework has the ability to explain

variation within the genus Arabidopsis [214]. First, the work shows that Arabidopsis architectures consis-

tently optimize wiring cost and conduction delay significantly better than would be expected by chance. It

then shows how Pareto front location varies between different Arabidopsis strains with known genetic differ-

ences. This provides clear signposts for future research into genotype-phenotype research for Arabidopsis.

Moreover, the Pareto-optimality framework is a more consistent and reliable way to characterize Arabidop-

sis plants by morphology; compared to other such metrics, the Pareto front location is less variable within

each strain. This work further confirms the value of an algorithmic model of biological transport networks.

3.5. Discussion

We studied a network design trade-off between two competing biological objective functions —

minimizing conduction delay and minimizing wiring cost — interpolated between by a single parameter. We

100



developed a graph-theoretic algorithm to generate near-Pareto optimal topologies that outperformed prior

methods. We then showed strikingly that almost all 14145 neural arbors analyzed achieved a level of Pareto

optimality significantly better than three other baselines, suggesting that such an optimization is unlikely to

occur by chance. We presented instances where specific biological functions (e.g., arbor type, cell type,

neurotransmitter type) employed different trade-offs, suggesting that different biological constraints can tune

arbor optimization while still obeying the same underlying trade-off principle. Finally, we compared neural

arbors to plant architectures and found that both were Pareto optimal despite different trade-offs employed,

suggesting broad similarities in branching structures across natural systems that have diverged long ago.

Our work raises three questions for future work. First, our algorithm for computing the Pareto front

was designed to find nearly Pareto optimal trees; it was not meant to mimic the growth process used by

neural arbors. Specifically, our algorithm used centralized computation when determining which edge to

add next to the existing tree. Further, it assumed that the locations of pre- or post-synaptic partners were

pre-determined. In reality, arbors likely grow using local rules of computation, and create synapses in loca-

tions that are not entirely pre-determined. This raises an open challenge of finding a distributed stochastic

growth algorithm to generate Pareto optimal arbors, while incorporating general rules by which neural arbors

develop, and including the option to add branch points and allowing some flexibility in where synapses are

made. Such an algorithm may involve modifying existing random graph models to produce desirable geo-

metric structures [215]. Second, as discussed in related work, there are several other objectives that may

constrain neural arbor topology, such as space-filling, that may help further classify arbor types and better

explain instances where arbors lied further from the Pareto front. One advantage of our Pareto optimality

framework is that it can naturally be extended to more than 2 objectives. Further, our model did not include

wire radii, as these data is not currently widely available for many different types of arbors. These data could

also be introduced in our framework using weighted edges. Third, further improvements could be made to

our greedy algorithm. For example, instead of only considering one edge to add per iteration, we could add

multiple edges per time step. The algorithm would choose the optimal set of k new edges in each time-step;

however, such a k-greedy algorithm would increase the run-time by a factor of O(nk+1) steps.

3.6. Methods

3.6.1 Adapting Khuller’s algorithm for our problem formulation

Here, we describe the steps we take to modify Khuller’s light-approximate shortest path tree (LAST)

algorithm [199] to solve our problem formulation. Our algorithm takes a value α ∈ [0, 1] as input, which

101



describes the weight prioritizing minimizing wiring cost and conduction delay. Khuller’s algorithm takes as

input a value β ∈ [1,∞], which serves a similar purpose. Here we describe how to optimally convert our

parameter α ∈ [0, 1] to a parameter β ∈ [1,∞] such that we may apply Khuller’s algorithm to solve our

problem.

Let P = {p1, p2, . . . , pn; r} be points representing the synapses and the soma. A spanning tree TP

has V (TP) = P (i.e., no additional Steiner points). The minimimum spanning tree is the spanning tree MP

that minimizes the wiring cost; the shortest path tree SP is the spanning tree that minimizes the conduction

delay. Both MP and SP can be constructed efficiently.

Given MP , SP and β > 1, Khuller’s algorithm produces a tree TP such that:

• W (TP) ≤
(
1 +

2

β − 1

)
W (MP)

• D(TP) ≤ βD(SP)

Porting to our formulation, given α ∈ [0, 1], Khuller’s algorithm guarantees a tree TP whose total

cost is at most:

f(β) = α

(
1 +

2

β − 1

)
W (MP) + β(1− α)D(SP) (3.4)

We seek to find β > 1 which minimizes Equation (3.4). Taking derivatives:

df
dβ

=
−2αW (MP)

(β − 1)2
+ (1− α)D(SP) = 0

2αW (MP)

(β − 1)2
= (1− α)D(SP)

(β − 1)2 =
2αW (MP)

(1− α)D(SP)

β = 1 +

√
2αW (MP)

(1− α)D(SP)

From this, we can use Khuller’s algorithm to approximate an optimal tree as follows: given P and α,

we compute the Satellite tree (SP ) and minimum spanning tree (MP ), map α to β using the formula above,

and then return the result of applying Khuller’s algorithm.

Technically, Equation (3.4) is undefined for α = 1. In this special case, we output the minimum

spanning tree MP . This does not violate the theoretical guarantees of the algorithm. As α → 1, β → ∞,

and we get that:

• W (TP) ≤W (MP) (i.e., the same wiring cost as the minimum spanning tree)

• D(TP) ≤ ∞ ·D(SP) (trivially true)
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3.6.2 Assessing the quality of the Pareto front generated by an algorithm

Here, we define how we compare the Pareto fronts generated by two algorithms. A tree T1 is Pareto

optimal if it is not partially dominated by any other tree T2 (i.e., there is no T2 such that T2 ⪯ T1), according to

the two objectives of wiring cost and conduction delay. To measure the quality of the Pareto front generated

by one algorithm, we count the number of trees in its Pareto front that are not partially dominated by a tree

generated by the second algorithm.

Formally, let T ′ be a tree generated by one algorithm, and let T = {T1, T2, . . . , Tn} be a set of trees

generated by the second algorithm, representing its Pareto front. We say that T ′ is partially dominated by

T (i.e., T ⪯ T ′) if Ti ⪯ T ′ for some Ti ∈ T .

Now, given two sets of Pareto fronts, T1 and T2, we count how many trees in T1 are partially domi-

nated by some tree in T2:

|{Ti : Ti ∈ T1, T2 ⪯ Ti}|
|T1|

.

Larger values of this proportion imply that more trees in T1 are partially dominated by T2, meaning

that the latter is a closer approximation to the true Pareto front.

This definition can be extended to compare one algorithm’s Pareto front T1 with the Pareto front’s

of k other algorithms by comparing each tree in T1 with the union of all the trees from the k other algorithms.

3.6.3 Measuring the distance of an arbor to the Pareto front

Given a set of input points P, our algorithm generates the Pareto front, corresponding to the Pareto

optimal topologies for values of α ∈ [0, 1]. Given a neural arbor TP , we seek to compute how far away TP is

from the nearest Pareto optimal topology. Intuitively, this distance corresponds to the amount that the wiring

cost and conduction delay for Pareto optimal trees would have to be scaled so that TP lies on the Pareto

front.

Let TP be a neural arbor, and let Tα
P be the Pareto optimal tree on P for a given value of α. Define

the distance from TP to Tα
P to be:

s(Tα
P , TP) = max

{
W (TP)

W (Tα
P )

,
D(TP)

D(Tα
P )

}
.

The idea is to compute the ratios of the wiring costs and conduction delays for the actual neural

arbor versus the optimal tree, and to then set the distance to be the maximum of these two ratios, which is
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Figure 3.8: Measuring distance to the Pareto front.

guaranteed to be ≥ 1. The maximum measures how much one would have to multiply the wiring cost and

conduction delay of Tα
P until TP until it is lower than Tα

P for both objectives. In Figure 3.8, we illustrate this

distance using one example neural arbor. We show the Pareto front (blue), a scaled version of the Pareto

front (red) that intersects with a neural arbor, and a further scaled Pareto front (green). For this arbor, its

distance to the Pareto front is s = 1.02; by comparison, the scaling distance for the Centroid tree is 1.47.

Thus, the scaling distance between an arbor TP and the closest Pareto optimal arbor is:

min
αi

s(TP , T
αi

P ), (3.5)

where αi ∈ [0, 1]. If TP lies exactly on the Pareto front, then its distance is 1.

The value of α that best explains the topology of TP is:

argmin
αi

s(TP , T
αi

P ). (3.6)

These two parameters encode global properties of the arbor; the distance tells us how far the arbor
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lies from the Pareto front, and the α value tells us how the arbor balances the trade-off.

3.6.3.1 An alternative measure of distance to the Pareto front

An alternative way to measure the distance from a neural arbor to a Pareto optimal tree would be

to simply use the ℓ2 distance between the objectives of the two trees. Let TP be a neural arbor and Tα
P be

the Pareto-optimal arbor for some value of α. The ℓ2 distance between the two trees is:

√
(W (TP)−W (Tα

P ))
2 + (D(TP)−D(Tα

P ))
2.

The problem with this measure of distance is that there is a significant positive correlation between

a neuron’s size (number of synapses) and its ℓ2 distance to the Pareto front (R = 0.29, p < 10−260, using

a permutation test). This makes it difficult to compare arbors with different sizes. In contrast, using the

scaling-based definition of distance above, there is no significant correlation between size and distance to

the Pareto front (R = 0.01, p = 0.56 using a permutation test).

3.6.3.2 Comparing to baseline networks

How likely is it that a neural arbor would be Pareto optimal by chance? For each set of input points

P, we compared against the following three baselines that generate trees on the same set of points:

1. Random tree: We construct a complete graphGP whose nodes are the points inP. We then construct

a random spanning tree on GP using a loop-erased random walk algorithm [216]. For each input point

set P, we compute 20 random trees.

2. Centroid tree: We compute the centroid of the points inP and connect every point inP to this centroid.

This tree represents a structurally stable arbor with even weight dispersion [122].

3. Barabási-Albert tree: We compute a tree using the Barabási-Albert model [217], with parameters

n = |P|, k = 1. First, two random nodes are connected by an edge. Then in each step of the

algorithm, an unconnected node is connected to a single node in the tree selected with probability

proportional to the node’s degree. This uses a “rich-get-richer” model with hubs forming. Because

there is no notion of nodes being physically embedded in this model, after constructing this tree, we

randomly map nodes in the tree to points in P. For each input point set P, we compute 20 random

trees.

105



Assessing statistical significance. First, we determined how often a tree generated by a baseline

model lay closer to the Pareto front than the neural arbor. Specifically, for each baseline and each set of

input points, we computed the proportion of trees generated by the baseline that had a smaller distance to

the Pareto front than the neural arbor. For Barabási-Albert and random trees, we computed the proportion

of the 20 trees that lied closer to the Pareto front than the corresponding neural arbor. We then performed

a binomial test on this proportion, using the null hypothesis that the true probability was 0.5 (i.e., the neural

arbor and the baseline are equally likely to be closer to the Pareto front compared to the other). The al-

ternative hypothesis was that the true probability was > 0.5 (i.e., the neural arbor lied closer to the Pareto

front).

Second, we measured how much farther from the Pareto front trees generated by the baseline

model were compared to the neural arbor. We computed the ratio of the average distance between each

baseline and the neural arbor. We then performed a T-test on the average value of this ratio, using the null

hypothesis that the ratio is 1 (i.e., the null model is, on average, just as close to the Pareto front as the neural

arbor). The alternative hypothesis was that the ratio is > 1 (i.e., the null model is, on average, farther from

the Pareto front than the neural arbor). For the Barabási-Albert and Random trees, these ratios were pooled

over all 20 trees.

3.6.4 Data for neural arbor tracings

To test whether a broad set of neural arbors are Pareto optimal, we collected 14145 digitally recon-

structed 3-dimensional neural arbors from the Neuromorpho database [218, 219]. This data comprised 39

species, 296 brain regions, 239 cell types, and 242 labs1 Each arbor was annotated according to its arbor

type, cell type, and neurotransmitter type (Table 3.2). Arbors were selected at random from the database.

While Neuromorpho provides a large benchmark dataset to test the generality of any principle of

arbor topology, there are a few caveats to note. First, some of the arbor reconstructions deposited may not

be complete (e.g., parts of axons may be cut-off). The size of our dataset, and the number of different labs

represented, suggests that we are likely not biasing our analysis towards any particular structure or sampling

method; however, in principle, we can only analyze and draw conclusions about the portion of arbors that

are available. Second, the radii of each segment is not provided, and thus we treat each segment as 1-

dimensional. Third, the precise location of each synapse along the arbor is not known (see below).
1There is no standard naming procedure in annotating arbors with these biological categories. For example, different labs may use

different names for the same cell type. We do not attempt to standardize this naming procedure here.
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3.6.4.1 Synapse locations along the arbor

Each reconstructed arbor contains a point denoting the root (r) of the arbor, and a list of line seg-

ments that trace the structure of the arbor. The exact synapse locations (p1, p2, . . . , pn) are not provided

by the tracing, and may be cell-type-specific or even modulated by learning. We follow prior work [173]

and distribute synapses uniformly on the arbor. Specifically, for dendrites we space synapses every 0.2 mi-

crons [212], and for axons we space synapses every 4 microns [211] along the arbor tracing. An alternative

approach would be to randomly select the inter-synapse space interval from a Gaussian or an exponential

distribution with the appropriate means and variances, though this would require that for each arbor we

generate many versions of the Pareto front per sampling of synapse points, which would greatly increase

computational complexity. We show, however, that other inter-synapse spacing values generate similar

optimality results (Figure 3.4). We also studied a small set of arbors with fluorescently-tagged synapse

locations, and find similar results (Figure 3.5).

Using this approach, our arbors ranged from 100–9999 points, and the total lengths of arbors ranged

from 182.57–25753.34 microns.

3.7. Data availability statement

Code is available at https://github.com/arjunc12/neurons. Tracings of neural arbors are avail-

able on neuromorpho.org.
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Conclusion

In this dissertation I introduced the history of algorithms in nature, i.e., modelling biological systems

as distributed algorithms that attempt to solve optimization problems. I showed how drawing inspiration from

biological systems has allowed computer scientists to discover innovative algorithmic techniques, and how

algorithmic perspectives can help biologists make precise predictions about how these biological systems

function. I have contributed to the field of algorithms in nature by mining computational insights from data

on turtle ant colonies and neural arbor morphologies.

In Chapter 1, I defined a mathematical model to describe how turtle ants forage, and what problems

they must solve. I showed how data on turtle ant colonies can be used to derive a distributed algorithm

to repair breaks in a foraging network; the algorithm that I derive requires extremely few resources, and is

robust to a variety of potential hazards that turtle ants may face. I showed how an algorithmic model of turtle

ants can be used to identify potential critical features of their foraging behavior.

In Chapter 2, I used my algorithmic model of turtle ant foraging to generate testable hypotheses

about the higher level design principles that guide their foraging behavior. I analyzed data on turtle ant trail

networks from several days, and to see whether turtle ants favored trail networks with fewer nodes, shorter

edges, or physically favorable nodes. I showed that turtle ants trail networks tend to have fewer nodes and

more physically advantages nodes (but not shorter edges) than would be expected by chance. I concluded

that turtle ants take advantage of environmental variation to avoid certain parts of the vegetation and keep

the colony coordinated.

In Chapter 3, I developed a mathematical model of neural arbors as transport networks that manage

trade-offs between efficiency and economy. I defined a framework for measuring how well individual arbors

manage trade-offs, and analyzed morphological data on a large cross section of neurons. I confirmed the

hypothesis that neural arbors manage this trade-off in a near-optimal manner, thus demonstrating the poten-

tial for using neuroscience as a tool to design better distributed computing algorithms. Finally, I showed how

an algorithmic model of neural arbors can help produce hypotheses about structure-function relationships in

neural arbors, as well as similarities between neural arbors and plant arbors (and possibly other systems).
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Common themes

My research describes ways in which turtle ants and neural arbors have evolved distributed al-

gorithms for fundamental network routing problems. In doing so, I identify several emerging themes that

can inform future research into nature-inspired algorithms. First, my work highlights the ubiquity of routing

networks in nature, and suggests that distributed approaches to routing algorithms merit deeper investiga-

tion. Turtle ants and neural arbors epitomize the potential robustness and scalability benefits that come

with a decentralized algorithm; the variability among neural arbors from different cell types also speaks to

the remarkable potential for adaptability in distributed algorithms. Research on routing network design will

benefit from allocating more investigative resources into these two systems, as well as the other algorithmic

biological systems.

Second, my research highlights novel ways in which computer science can contribute to advances

in biology. The power of computational techniques for analyzing large biological datasets has been well-

documented. However, simply using an algorithmic framework to model biological systems can be benefi-

cial. An algorithmic model, by definition, produces precise predictions about what should occur, and gives

clear signposts for how to design experiments. An algorithmic model of turtle ants predicts that turtle ants

cannot forage effectively without down-regulating pheromone on a dead end; an algorithmic model of neu-

ral arbors predicts that certain types of neurons should have functions that require more efficient signal

conduction. Going forward, my work may provide a blueprint for innovation in the study of other biological

systems.

Finally, the need for managing trade-offs is a re-occurring theme in my research. Both turtle ants and

neural arbors attempt to balance multiple objectives when constructing routing networks: turtle ants manage

trade-offs between forming short paths between nests versus avoiding junctions where ants can get lost,

and neural arbors manage trade-offs between efficiently conducting signals versus conserving material.

Moreover, I show that when repairing breaks in foraging trails, turtle ants face inherent trade-offs between

targeted optimality and general robustness. This is a pattern common to other biological systems [59]: it is

almost always impossible to find a single optimal phenotype, so nature selects for phenotypes that perform

well for multiple objectives, if not optimally for any one objective. This work highlights the necessity of

considering several possible optimization objectives when modelling any biological system.
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Future Work

My research raises open questions about how turtle ant colonies and neural arbors construct routing

networks from scratch. These questions involve refining the model of computation for each system, and

deriving a novel algorithm based on experimental data and algorithmic techniques. The algorithmic models

I have developed may also prove useful in probability theory and neuroanatomy. Solving these problems will

make it easier to design efficient optimization algorithms, and will make it easier to understand the behavior

of turtle ants, neural arbor growth, and perhaps many other related systems.

What is an appropriate model of computation for turtle ants?

My research uses a simple model of computation for how each individual ant moves about the graph:

each ant may make its next choice based on adjacent edge weights and memory of the previous node it

was at, and it may temporarily stop laying pheromone if it is going back from a dead end. I seek to research

biologically reasonable extensions to this model. Some natural questions include: should simulated ants

shouldmore than one time step of memory? Should they lay variable amounts of pheromone, and/or whether

they can lay multiple types of pheromone (such as the ’no-entry’ signal used by pharaoh ants [81])? Do

turtle ants possess a sense of ‘direction’, i.e., can they determine whether certain edges lead away from the

destination nest? This feature could be part of how turtle ants avoid getting trapped in cycles.

Refining these aspects of the turtle ant computational model can be done in two ways. The obvious

method would be to design experiments to test what abilities individual turtle ants possess. The other method

would be the one described in Chapter 1: mathematically demonstrate that certain features are essential to

the success of the algorithm, strongly implying that this feature is present in observed ants.

What distributed algorithm that turtle ants use to form trail networks?

I propose several biologically plausible distributed algorithms for repairing breaks in trail networks.

Ultimately, the goal of the problem is find an all-purpose algorithm that can create, maintain, and repair a

trail network. Each ant will start at a nest, and be capable of recognizing nests. The goal is for the ants to

form a trail network connecting all of the nests. There should not be any cycles that do not include multiple

nests. Ideally there should be at least one parameter, such as total time or total number of ants, that can be

modified to make the algorithm arbitrarily likely to succeed.

To fully mimic the turtle ant foraging, the algorithm should be able to run continuously and respond

to changes in the network. This includes finding shorter trails if they emerge, building and pruning temporary
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trails to food sources, and repairing breaks caused by disruptions to an edge.

How should transition indices be incorporated into the mathematical model?

My second chapter shows that turtle ant trail networks include nodes with lower transition indices

than would be expected by chance. We hypothesize that this is because these transitions can be crossed in

fewer ways, and thus can be incorporated into the foraging network more quickly. The next step is to design

field experiments to confirm this explanation or propose an alternate one. Assuming our hypothesis is true,

there are multiple ways to incorporate this into our line graph model of turtle ant foraging. One possible

way to model the transition index would be that turtle ants can only sense a fraction of the pheromone when

traversing a high transition index edge. Another way would be to model the turtle ant vegetation as a multi-

graph; higher transition indices correspond to more multi-edges between two nodes in the line graph. When

an ant crosses a multi-edge, it only senses pheromone from one of the multi-edges (rather than a constant

fraction of the total pheromone). Both of these changes would bias ants towards low transition indices for

which they can sense all of the pheromone.

What are the connections between turtle ant foraging and random walk theory?

In Chapter 1, I highlight connections between turtle ants and probability theory. Turtle ants are

essentially a fully realized version of the edge-reinforced random walks that have been well studied by

probability theorists. Just like turtle ants may be able to teach us about distributed algorithms, they may be

able to teach us about random walk theory. An interesting hypothesis to test would be whether turtle ants

have evolved behavior to take advantage of asymptotic properties of edge-reinforced random walks. The

classic edge-reinforced random walk includes one walker, and non-decreasing edge weights. Turtle ants

represent a way for probability theorists study an edge-reinforced random walk with multiple walkers and

exponentially decaying edge weights. Two important problems are determining many (i.e., a finite set, all

but a finite set, etc.) edge weights asymptotically go to infinity, and how many edge weights asymptotically

decay to 0.

Do turtle ant trail networks resemble Steiner trees?

It has been shown that other ant species form trail networks that resemble Euclidean Steiner trees [19]

– that is, they connect nests using the trail with the smallest possible length. A natural questions is whether

turtle ant trail networks also resemble Steiner trees. Unlike the Euclidean Steiner tree, the turtle ant Steiner
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tree doesn’t necessarily need to minimize physical length; it could minimize total nodes, or total transition

index of all transitions used. It may also minimize the average transition index, which, as I show in Chapter

2, is also an NP-hard problem. It is possible the turtle ants achieve some Pareto-optimal solution between

these objectives; or they may not construct Steiner trees, but instead form multiple paths that start and end

at the same pair of nests.

How do trail networks differ among species in the Cephalotes genus?

My research to this point has focused on the species Cephalotes goniodontus. The results I present

raise several questions about other ant species within the arboreal Cephalotes genus. Field data can tell

us whether other arboreal ants use a similar repair algorithm, whether they use similar parameters, and

whether their trail networks optimize the same objectives. It would be particularly interesting to see if other

species are equally biased towards low transition indices. It is possible that other species have more ability

to sense pheromone across a node, or forage in less tangled vegetation, leading to trail networks that do

not prioritize low transition indices.

How should conduction delay be measured?

I measured conduction delay by measuring the total length from the synapse to the cell body. In

reality, there may be other factors that affect signal propagation. This may include the number of bifurcations

the arbor must traverse, the radius of the wire, and the material used to construct the arbor. A more accurate

model of conduction delay will yield even stronger analysis of neural arbor morphology.

What is an appropriate model of computation for neural arbors?

While my work confirms that neural arbors achieve Pareto optimal trade-offs between wiring cost

and conduction delay, it doesn’t explain how. The first step to doing so involves defining a model for how the

neural arbor performs computation. This will likely involve viewing the neural arbors as a continuously grow-

ing tree, in which every tree tip is a distributed process. This will also involve defining what operations each

distributed process can perform; these may include extending a trial branch, bifurcating into two processes,

and scanning within a fixed radius for synaptic connections.
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What distributed algorithm to neural arbors use to form Pareto-optimal morpholo-

gies?

After defining an appropriate computational model, the natural next step is to algorithm that is plau-

sible within that model. The algorithm should take α as an input and output an arbor that is close to α on

the Pareto front. I have experimented with algorithms in which the arbor repeatedly extends a trial branch

from one of its tips, and either connects to all synapses in the area, or retracts the branch if no synapses

are found. I initially found that a simple algorithm is not as optimal as neural arbors, and it doesn’t generate

the same diversity of morphologies (most arbors resembled minimum wiring cost arbors). This suggests the

need for a more sophisticated distributed algorithm.

What other objectives do neural arbors seek to optimize?

I find that some types of neural arbors are consistently farther from being Pareto optimal than other

types of arbors. While it is possible that these arbors are simply worse at optimizing the two objectives, it is

more likely that these arbors are optimizing other objectives. The beauty of our Pareto front model is that it

can easily be extended to multiple objectives. Neuroscience research can be used to refine the model by

to determining other plausible design principles, and test whether certain neural arbors that perform poorly

for wiring cost or conduction delay manage to outperform other neurons at different objectives.

How does Pareto front location correspond to arbor function?

I find that different types of arbors prioritize objectives differently. This is likely related to the func-

tions of those neurons. A hypothesis worth exploring is whether arbors that prioritize conduction delay

because the brain requires those arbors to transmit signals as quickly as possible, and whether efficient

signal conduction is less important for arbors that prioritize wiring cost.
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