U
    DvfR@                     @   s\  zd dl Z e jZW n( eefk
r:   d dlm Z  dZY nX d dlZddlmZ	m
Z
 ddgZdZed	Ze je je e je je je jd
dd Ze je je je je je je jde je je je je jddd Ze je je je je je je jde je je je je jddd Ze je je je je je je jddd Ze je je je je je jde je je je je jde je je je je jde je je je je jddd Ze je je je je je je jde je je jddd Ze je je je je je je jde je je je je jddd  Ze je je e je je je je je je jd!e je je jd"d#d$ Ze je je e je je je je je jde je je je je jd%d&d' Ze je e je je je je je je jd(e je je jdd)d* Ze je je je jd+e je je je je je jd,d-d. Z e je je je jd/e je jd0e je jd1e je je je je jd2e je je je je je jd3d4d5 Z!e je jd6e je jd7e je jd1d<d9dZ"e je je je jd:e je jd1d=d;dZ#dS )>    N)cythonF   )ErrorApproxNotFoundErrorcurve_to_quadraticcurves_to_quadraticd   NaNZv1Zv2c                 C   s   | |   jS )zReturn the dot product of two vectors.

    Args:
        v1 (complex): First vector.
        v2 (complex): Second vector.

    Returns:
        double: Dot product.
    )	conjugaterealr
    r   9/tmp/pip-unpacked-wheel-qlge9rch/fontTools/cu2qu/cu2qu.pydot(   s    r   )abcd)_1_2_3_4c                 C   s<   |}|d | }|| d | }| | | | }||||fS N      @r   )r   r   r   r   r   r   r   r   r   r   r   calc_cubic_points9   s
    r   )p0p1p2p3c                 C   s<   ||  d }|| d | }| }|| | | }||||fS r   r   )r   r   r   r   r   r   r   r   r   r   r   calc_cubic_parametersG   s
    r   c                 C   s   |dkrt t| |||S |dkr4t t| |||S |dkrt| |||\}}t t|d |d |d |d t|d |d |d |d  S |dkrt| |||\}}t t|d |d |d |d t|d |d |d |d  S t| ||||S )a  Split a cubic Bezier into n equal parts.

    Splits the curve into `n` equal parts by curve time.
    (t=0..1/n, t=1/n..2/n, ...)

    Args:
        p0 (complex): Start point of curve.
        p1 (complex): First handle of curve.
        p2 (complex): Second handle of curve.
        p3 (complex): End point of curve.

    Returns:
        An iterator yielding the control points (four complex values) of the
        subcurves.
             r   r      )itersplit_cubic_into_twosplit_cubic_into_three_split_cubic_into_n_gen)r   r   r   r   nr   r   r   r   r   split_cubic_into_n_iterU   s&    r)   )r   r   r   r   r(   )dtdelta_2delta_3i)a1b1c1d1c                 c   s   t | |||\}}}}d| }	|	|	 }
|	|
 }t|D ]}||	 }|| }|| }d| | | |
 }d| | | d| |  |	 }|| | ||  ||  | }t||||V  q6d S )Nr   r!   r    )r   ranger   )r   r   r   r   r(   r   r   r   r   r*   r+   r,   r-   t1Zt1_2r.   r/   r0   r1   r   r   r   r'      s      r'   )midderiv3c                 C   s\   | d||   | d }|| | |  d }| | | d || |f||| || d |ffS )a  Split a cubic Bezier into two equal parts.

    Splits the curve into two equal parts at t = 0.5

    Args:
        p0 (complex): Start point of curve.
        p1 (complex): First handle of curve.
        p2 (complex): Second handle of curve.
        p3 (complex): End point of curve.

    Returns:
        tuple: Two cubic Beziers (each expressed as a tuple of four complex
        values).
    r!         ?      ?r   )r   r   r   r   r4   r5   r   r   r   r%      s
    r%   )mid1deriv1mid2deriv2c                 C   s   d|  d|  d|  | d }|d|  d|   d }| d|  d|  d|  d }d| d|  |  d }| d|  | d || |f||| || |f||| |d|  d |ffS )	a  Split a cubic Bezier into three equal parts.

    Splits the curve into three equal parts at t = 1/3 and t = 2/3

    Args:
        p0 (complex): Start point of curve.
        p1 (complex): First handle of curve.
        p2 (complex): Second handle of curve.
        p3 (complex): End point of curve.

    Returns:
        tuple: Three cubic Beziers (each expressed as a tuple of four complex
        values).
          r#   gh/?r!   r"   r    r   r   )r   r   r   r   r8   r9   r:   r;   r   r   r   r&      s      r&   )tr   r   r   r   )_p1_p2c                 C   s0   ||| d  }||| d  }||| |   S )ax  Approximate a cubic Bezier using a quadratic one.

    Args:
        t (double): Position of control point.
        p0 (complex): Start point of curve.
        p1 (complex): First handle of curve.
        p2 (complex): Second handle of curve.
        p3 (complex): End point of curve.

    Returns:
        complex: Location of candidate control point on quadratic curve.
    g      ?r   )r>   r   r   r   r   r?   r@   r   r   r   cubic_approx_control   s    rA   )abcdphc                 C   s`   ||  }|| }|d }zt || | t || }W n tk
rR   ttt Y S X |||  S )ay  Calculate the intersection of two lines.

    Args:
        a (complex): Start point of first line.
        b (complex): End point of first line.
        c (complex): Start point of second line.
        d (complex): End point of second line.

    Returns:
        complex: Location of intersection if one present, ``complex(NaN,NaN)``
        if no intersection was found.
    y              ?)r   ZeroDivisionErrorcomplexNAN)r   r   r   r   rB   rC   rD   rE   r   r   r   calc_intersect   s    rI   )	tolerancer   r   r   r   c                 C   s   t ||krt ||krdS | d||   | d }t ||krDdS || | |  d }t| | | d || ||ot||| || d ||S )a  Check if a cubic Bezier lies within a given distance of the origin.

    "Origin" means *the* origin (0,0), not the start of the curve. Note that no
    checks are made on the start and end positions of the curve; this function
    only checks the inside of the curve.

    Args:
        p0 (complex): Start point of curve.
        p1 (complex): First handle of curve.
        p2 (complex): Second handle of curve.
        p3 (complex): End point of curve.
        tolerance (double): Distance from origin.

    Returns:
        bool: True if the cubic Bezier ``p`` entirely lies within a distance
        ``tolerance`` of the origin, False otherwise.
    Tr!   r6   Fr7   )abscubic_farthest_fit_inside)r   r   r   r   rJ   r4   r5   r   r   r   rL     s     
   rL   )rJ   )q1c0r0   c2c3c                 C   s   t | d | d | d | d }t|jr.dS | d }| d }||| d  }||| d  }td|| d  || d  d|sdS |||fS )a  Approximate a cubic Bezier with a single quadratic within a given tolerance.

    Args:
        cubic (sequence): Four complex numbers representing control points of
            the cubic Bezier curve.
        tolerance (double): Permitted deviation from the original curve.

    Returns:
        Three complex numbers representing control points of the quadratic
        curve if it fits within the given tolerance, or ``None`` if no suitable
        curve could be calculated.
    r   r   r    r!   NUUUUUU?)rI   mathisnanimagrL   )cubicrJ   rM   rN   rP   r0   rO   r   r   r   cubic_approx_quadraticE  s     rV   )r(   rJ   )r-   )all_quadratic)rN   r0   rO   rP   )q0rM   next_q1q2r1   c                 C   sd  |dkrt | |S |dkr&|dkr&| S t| d | d | d | d |}t|}td|d |d |d |d }| d }d}| d |g}	td|d D ]}
|\}}}}|}|}|
|k rt|}t|
|d  |d |d |d |d }|	| || d }n|}|}|| }t||ksJt|||| d  | ||| d  | ||s d	S q|	| d  |	S )
a'  Approximate a cubic Bezier curve with a spline of n quadratics.

    Args:
        cubic (sequence): Four complex numbers representing control points of
            the cubic Bezier curve.
        n (int): Number of quadratic Bezier curves in the spline.
        tolerance (double): Permitted deviation from the original curve.

    Returns:
        A list of ``n+2`` complex numbers, representing control points of the
        quadratic spline if it fits within the given tolerance, or ``None`` if
        no suitable spline could be calculated.
    r   r    Fr   r!   y                r7   rQ   N)rV   r)   nextrA   r2   appendrK   rL   )rU   r(   rJ   rW   ZcubicsZ
next_cubicrY   rZ   r1   spliner-   rN   r0   rO   rP   rX   rM   Zd0r   r   r   cubic_approx_splinei  sX    
     
    
r^   )max_err)r(   Tc                 C   sV   dd | D } t dtd D ],}t| |||}|dk	rdd |D   S qt| dS )a5  Approximate a cubic Bezier curve with a spline of n quadratics.

    Args:
        cubic (sequence): Four 2D tuples representing control points of
            the cubic Bezier curve.
        max_err (double): Permitted deviation from the original curve.
        all_quadratic (bool): If True (default) returned value is a
            quadratic spline. If False, it's either a single quadratic
            curve or a single cubic curve.

    Returns:
        If all_quadratic is True: A list of 2D tuples, representing
        control points of the quadratic spline if it fits within the
        given tolerance, or ``None`` if no suitable spline could be
        calculated.

        If all_quadratic is False: Either a quadratic curve (if length
        of output is 3), or a cubic curve (if length of output is 4).
    c                 S   s   g | ]}t | qS r   rG   .0rD   r   r   r   
<listcomp>  s     z&curve_to_quadratic.<locals>.<listcomp>r   Nc                 S   s   g | ]}|j |jfqS r   r   rT   rb   sr   r   r   rc     s     )r2   MAX_Nr^   r   )curver_   rW   r(   r]   r   r   r   r     s    )llast_ir-   c           	      C   s   dd | D } t |t | ks"tt | }dg| }d }}d}t| | ||| |}|dkrv|tkrhq|d7 }|}q@|||< |d | }||kr@dd |D S q@t| dS )a  Return quadratic Bezier splines approximating the input cubic Beziers.

    Args:
        curves: A sequence of *n* curves, each curve being a sequence of four
            2D tuples.
        max_errors: A sequence of *n* floats representing the maximum permissible
            deviation from each of the cubic Bezier curves.
        all_quadratic (bool): If True (default) returned values are a
            quadratic spline. If False, they are either a single quadratic
            curve or a single cubic curve.

    Example::

        >>> curves_to_quadratic( [
        ...   [ (50,50), (100,100), (150,100), (200,50) ],
        ...   [ (75,50), (120,100), (150,75),  (200,60) ]
        ... ], [1,1] )
        [[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]]

    The returned splines have "implied oncurve points" suitable for use in
    TrueType ``glif`` outlines - i.e. in the first spline returned above,
    the first quadratic segment runs from (50,50) to
    ( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...).

    Returns:
        If all_quadratic is True, a list of splines, each spline being a list
        of 2D tuples.

        If all_quadratic is False, a list of curves, each curve being a quadratic
        (length 3), or cubic (length 4).

    Raises:
        fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation
        can be found for all curves with the given parameters.
    c                 S   s   g | ]}d d |D qS )c                 S   s   g | ]}t | qS r   r`   ra   r   r   r   rc     s     2curves_to_quadratic.<locals>.<listcomp>.<listcomp>r   )rb   rh   r   r   r   rc     s     z'curves_to_quadratic.<locals>.<listcomp>Nr   r   c                 S   s   g | ]}d d |D qS )c                 S   s   g | ]}|j |jfqS r   rd   re   r   r   r   rc     s     rk   r   )rb   r]   r   r   r   rc     s     )lenAssertionErrorr^   rg   r   )	ZcurvesZ
max_errorsrW   ri   Zsplinesrj   r-   r(   r]   r   r   r   r     s$    '
)T)T)$r   ZcompiledZCOMPILEDAttributeErrorImportErrorZfontTools.miscrR   errorsr   Z
Cu2QuErrorr   __all__rg   floatrH   ZcfuncinlineZreturnsdoublelocalsrG   r   r   r   r)   intr'   r%   r&   rA   rI   rL   rV   r^   r   r   r   r   r   r   <module>   s6  


         %         


    @ 