U
    9vfÞ  ã                   @   s    d Z ddlZdgZddd„ZdS )z
Flow Hierarchy.
é    NÚflow_hierarchyc                    sB   ˆ   ¡ st d¡‚t ˆ ¡}dt‡ ‡fdd„|D ƒƒˆ  ˆ¡  S )a‚  Returns the flow hierarchy of a directed network.

    Flow hierarchy is defined as the fraction of edges not participating
    in cycles in a directed graph [1]_.

    Parameters
    ----------
    G : DiGraph or MultiDiGraph
       A directed graph

    weight : key,optional (default=None)
       Attribute to use for node weights. If None the weight defaults to 1.

    Returns
    -------
    h : float
       Flow hierarchy value

    Notes
    -----
    The algorithm described in [1]_ computes the flow hierarchy through
    exponentiation of the adjacency matrix.  This function implements an
    alternative approach that finds strongly connected components.
    An edge is in a cycle if and only if it is in a strongly connected
    component, which can be found in $O(m)$ time using Tarjan's algorithm.

    References
    ----------
    .. [1] Luo, J.; Magee, C.L. (2011),
       Detecting evolving patterns of self-organizing networks by flow
       hierarchy measurement, Complexity, Volume 16 Issue 6 53-61.
       DOI: 10.1002/cplx.20368
       http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
    z%G must be a digraph in flow_hierarchyé   c                 3   s   | ]}ˆ   |¡ ˆ¡V  qd S )N)ZsubgraphÚsize)Ú.0Úc©ÚGÚweight© úA/tmp/pip-unpacked-wheel-_lngutwb/networkx/algorithms/hierarchy.pyÚ	<genexpr>/   s     z!flow_hierarchy.<locals>.<genexpr>)Zis_directedÚnxZNetworkXErrorZstrongly_connected_componentsÚsumr   )r   r	   Zsccr
   r   r   r   	   s    #

)N)Ú__doc__Znetworkxr   Ú__all__r   r
   r
   r
   r   Ú<module>   s   