U
    9vf™  ã                   @   sF   d Z ddlZddlmZ ddgZedƒedƒdd	d„ƒƒZd
d„ ZdS )zTFunctions related to the Mycielski Operation and the Mycielskian family
of graphs.

é    N)Únot_implemented_forÚmycielskianÚmycielski_graphZdirectedZ
multigraphé   c                    sž   t  | ¡}t|ƒD ]†}| ¡ ‰ | tˆ dˆ  ƒ¡ t| ¡ ƒ}| ‡ fdd„|D ƒ¡ | ‡ fdd„|D ƒ¡ | dˆ  ¡ | ‡ fdd„tˆ ƒD ƒ¡ q|S )a^  Returns the Mycielskian of a simple, undirected graph G

    The Mycielskian of graph preserves a graph's triangle free
    property while increasing the chromatic number by 1.

    The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new
    graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges.

    The construction is as follows:

    Let :math:`V = {0, ..., n-1}`. Construct another vertex set
    :math:`U = {n, ..., 2n}` and a vertex, `w`.
    Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`.
    For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and
    :math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add
    edge :math:`(u, w)` to M.

    The Mycielski Operation can be done multiple times by repeating the above
    process iteratively.

    More information can be found at https://en.wikipedia.org/wiki/Mycielskian

    Parameters
    ----------
    G : graph
        A simple, undirected NetworkX graph
    iterations : int
        The number of iterations of the Mycielski operation to
        perform on G. Defaults to 1. Must be a non-negative integer.

    Returns
    -------
    M : graph
        The Mycielskian of G after the specified number of iterations.

    Notes
    -----
    Graph, node, and edge data are not necessarily propagated to the new graph.

    é   c                 3   s   | ]\}}||ˆ  fV  qd S ©N© ©Ú.0ÚuÚv©Únr   úA/tmp/pip-unpacked-wheel-_lngutwb/networkx/generators/mycielski.pyÚ	<genexpr>>   s     zmycielskian.<locals>.<genexpr>c                 3   s   | ]\}}|ˆ  |fV  qd S r   r   r	   r   r   r   r   ?   s     c                 3   s   | ]}|ˆ  d ˆ  fV  qdS )r   Nr   )r
   r   r   r   r   r   A   s     )	ÚnxZconvert_node_labels_to_integersÚrangeZnumber_of_nodesZadd_nodes_fromÚlistÚedgesZadd_edges_fromÚadd_node)ÚGZ
iterationsÚMÚiZ	old_edgesr   r   r   r      s    ,
c                 C   s<   | dk rt  d¡‚| dkr$t  d¡S tt  d¡| d ƒS dS )a‡  Generator for the n_th Mycielski Graph.

    The Mycielski family of graphs is an infinite set of graphs.
    :math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an
    edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of
    :math:`M_{i-1}`.

    More information can be found at
    http://mathworld.wolfram.com/MycielskiGraph.html

    Parameters
    ----------
    n : int
        The desired Mycielski Graph.

    Returns
    -------
    M : graph
        The n_th Mycielski Graph

    Notes
    -----
    The first graph in the Mycielski sequence is the singleton graph.
    The Mycielskian of this graph is not the :math:`P_2` graph, but rather the
    :math:`P_2` graph with an extra, isolated vertex. The second Mycielski
    graph is the :math:`P_2` graph, so the first two are hard coded.
    The remaining graphs are generated using the Mycielski operation.

    r   zmust satisfy n >= 0r   N)r   ZNetworkXErrorZempty_graphr   Z
path_graphr   r   r   r   r   F   s
    

)r   )Ú__doc__Znetworkxr   Znetworkx.utilsr   Ú__all__r   r   r   r   r   r   Ú<module>   s   8