U
    >vfY                  r   @  s@  d dl mZ dZdZg ZeD ]HZzee W q ek
rb Z ze	e de  W 5 dZ[X Y qX qer|edd
e [[[d dlmZ zd d	lmZmZmZ W n: ek
r Z zejZed
e deW 5 dZ[X Y nX [[[d dlmZmZmZmZmZmZ d dlZ d dl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZY d dlZm[Z[ d dl\m]Z] d dl^m_Z_ d dl`maZa d dlbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZp d dl mqZqmrZrmsZsmtZtmuZumvZv d dl mwZw d dlxmyZy d dlzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ d dlmZ e Zeded ZedZ[[dZddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~dddddddddddddddddgrZdS )    )annotationsZrestructuredtext)ZnumpyZpytzZdateutilz: Nz(Unable to import required dependencies:

)is_numpy_dev)	hashtablelibtslibzC extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext --force' to build the C extensions first.)
get_option
set_optionreset_optiondescribe_optionoption_contextoptions)8
ArrowDtype	Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8DtypeUInt16DtypeUInt32DtypeUInt64DtypeFloat32DtypeFloat64DtypeCategoricalDtypePeriodDtypeIntervalDtypeDatetimeTZDtypeStringDtypeBooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex
RangeIndex
MultiIndexIntervalIndexTimedeltaIndexDatetimeIndexPeriodIndex
IndexSliceNaTPeriodperiod_range	Timedeltatimedelta_range	Timestamp
date_rangebdate_rangeIntervalinterval_range
DateOffset
to_numericto_datetimeto_timedeltaFlagsGrouper	factorizeuniquevalue_countsNamedAggarrayCategoricalset_eng_float_formatSeries	DataFrame)SparseDtype)
infer_freq)offsets)eval)concatlreshapemeltwide_to_longmerge
merge_asofmerge_orderedcrosstabpivotpivot_tableget_dummiesfrom_dummiescutqcut)apiarrayserrorsioplottingtseries)testing)show_versions)	ExcelFileExcelWriter
read_excelread_csvread_fwf
read_tableread_pickle	to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboardread_parquetread_orcread_featherread_gbq	read_htmlread_xml	read_json
read_stataread_sas	read_spss)json_normalize)test)get_versionszclosest-tagversionzfull-revisionida  
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
r   r   rB   r   r%   rE   r7   r*   r   r`   ra   r;   r   r   r<   rh   r$   r,   r   r   r   r   r5   r   r(   r'   r   r-   r@   r.   r   r+   r&   rD   rF   r   r0   r)   r2   r   r   r   r   rX   rA   rY   r4   rJ   rQ   rV   r3   r   rZ   rI   r=   rT   rU   r   rG   r6   r[   r    r!   rx   rK   rL   rN   rO   rP   r"   r#   rH   r   r   r/   rR   rS   r\   rW   rm   rc   rb   rp   rd   rq   ri   rr   rt   ro   rn   rf   rv   rw   rj   rk   rl   ru   re   rs   r
   rC   r	   r_   ry   r^   r1   r9   r8   rg   r:   r]   r>   r?   rM   )
__future__r   Z__docformat__Z_hard_dependenciesZ_missing_dependenciesZ_dependency
__import__ImportError_eappendjoinZpandas.compatr   Z_is_numpy_devZpandas._libsr   Z
_hashtabler   Z_libr   Z_tslibZ_errname_moduleZpandas._configr   r	   r
   r   r   r   Zpandas.core.config_initZpandasZpandas.core.apir   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   Zpandas.core.arrays.sparserF   Zpandas.tseries.apirG   Zpandas.tseriesrH   Zpandas.core.computation.apirI   Zpandas.core.reshape.apirJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r^   Zpandas.util._print_versionsr_   Zpandas.io.apir`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   ru   rv   rw   Zpandas.io.json._normalizerx   Zpandas.util._testerry   Zpandas._versionrz   vget__version__Z__git_version____doc____all__ r   r   3/tmp/pip-unpacked-wheel-vdrwu74i/pandas/__init__.py<module>   s>  (
 
A@ h!
,