U
    ?vfr7                     @  sZ  d Z ddlmZ ddlmZmZmZmZ ddlZ	ddl
mZ ddlmZmZ edeeZedeedZd	d
 Zdd ZddddZdd ZddddZddddZd<dddddddZd=ddddZd d!d"d#d$Zeddd%d&d'Zed(d)d%d*d'Zd+d,d%d-d'Zd.d/d0d1d2Zd.d/d3d4d5Zd6d6d6d7d8d9Zddd:d;Z dS )>zV
Module that contains many useful utilities
for validating data or function arguments
    )annotations)IterableSequenceTypeVaroverloadN)lib)is_bool
is_integerBoolishTBoolishNoneTc              	   C  sl   |dk rt dt|t|krht|| }t|| }|dkrDdnd}t|  d| d| d| d	d
S )z
    Checks whether 'args' has length of at most 'compat_args'. Raises
    a TypeError if that is not the case, similar to in Python when a
    function is called with too many arguments.
    r   z*'max_fname_arg_count' must be non-negative   argument	argumentsz() takes at most  z (z given)N)
ValueErrorlen	TypeError)fnameargsmax_fname_arg_countcompat_argsZmax_arg_countZactual_arg_countr    r   ;/tmp/pip-unpacked-wheel-vdrwu74i/pandas/util/_validators.py_check_arg_length   s    r   c              	   C  s   |D ]}zR|| }|| }|dk	r*|dks:|dkr@|dk	r@d}n||k}t |sXtdW n$ tk
r~   || || k}Y nX |std| d|  dqdS )z
    Check that the keys in `arg_val_dict` are mapped to their
    default values as specified in `compat_args`.

    Note that this function is to be called only when it has been
    checked that arg_val_dict.keys() is a subset of compat_args
    NFz'match' is not a booleanzthe 'z=' parameter is not supported in the pandas implementation of z())r   r   )r   Zarg_val_dictr   keyZv1Zv2matchr   r   r   _check_for_default_values/   s     r   None)returnc                 C  s,   t | ||| tt||}t| || dS )a  
    Checks whether the length of the `*args` argument passed into a function
    has at most `len(compat_args)` arguments and whether or not all of these
    elements in `args` are set to their default values.

    Parameters
    ----------
    fname : str
        The name of the function being passed the `*args` parameter
    args : tuple
        The `*args` parameter passed into a function
    max_fname_arg_count : int
        The maximum number of arguments that the function `fname`
        can accept, excluding those in `args`. Used for displaying
        appropriate error messages. Must be non-negative.
    compat_args : dict
        A dictionary of keys and their associated default values.
        In order to accommodate buggy behaviour in some versions of `numpy`,
        where a signature displayed keyword arguments but then passed those
        arguments **positionally** internally when calling downstream
        implementations, a dict ensures that the original
        order of the keyword arguments is enforced.

    Raises
    ------
    TypeError
        If `args` contains more values than there are `compat_args`
    ValueError
        If `args` contains values that do not correspond to those
        of the default values specified in `compat_args`
    N)r   dictzipr   )r   r   r   r   kwargsr   r   r   validate_argsU   s     r"   c                 C  s8   t |t | }|r4t|d }t|  d| ddS )z}
    Checks whether 'kwargs' contains any keys that are not
    in 'compat_args' and raises a TypeError if there is one.
    r   z'() got an unexpected keyword argument ''N)setlistr   )r   r!   r   ZdiffZbad_argr   r   r   _check_for_invalid_keys~   s    r&   c                 C  s$   |  }t| || t| || dS )a  
    Checks whether parameters passed to the **kwargs argument in a
    function `fname` are valid parameters as specified in `*compat_args`
    and whether or not they are set to their default values.

    Parameters
    ----------
    fname : str
        The name of the function being passed the `**kwargs` parameter
    kwargs : dict
        The `**kwargs` parameter passed into `fname`
    compat_args: dict
        A dictionary of keys that `kwargs` is allowed to have and their
        associated default values

    Raises
    ------
    TypeError if `kwargs` contains keys not in `compat_args`
    ValueError if `kwargs` contains keys in `compat_args` that do not
    map to the default values specified in `compat_args`
    N)copyr&   r   )r   r!   r   kwdsr   r   r   validate_kwargs   s    r)   c                 C  sh   t | |t|  || tt||}|D ] }||kr,t|  d| dq,|| t| || dS )a  
    Checks whether parameters passed to the *args and **kwargs argument in a
    function `fname` are valid parameters as specified in `*compat_args`
    and whether or not they are set to their default values.

    Parameters
    ----------
    fname: str
        The name of the function being passed the `**kwargs` parameter
    args: tuple
        The `*args` parameter passed into a function
    kwargs: dict
        The `**kwargs` parameter passed into `fname`
    max_fname_arg_count: int
        The minimum number of arguments that the function `fname`
        requires, excluding those in `args`. Used for displaying
        appropriate error messages. Must be non-negative.
    compat_args: dict
        A dictionary of keys that `kwargs` is allowed to
        have and their associated default values.

    Raises
    ------
    TypeError if `args` contains more values than there are
    `compat_args` OR `kwargs` contains keys not in `compat_args`
    ValueError if `args` contains values not at the default value (`None`)
    `kwargs` contains keys in `compat_args` that do not map to the default
    value as specified in `compat_args`

    See Also
    --------
    validate_args : Purely args validation.
    validate_kwargs : Purely kwargs validation.

    z-() got multiple values for keyword argument 'r#   N)r   tuplevaluesr   r    r   updater)   )r   r   r!   r   r   Z	args_dictr   r   r   r   validate_args_and_kwargs   s    (   
r-   TFbool)valuenone_allowedint_allowedr   c                 C  sN   t | }|r|p| dk}|r*|p(t| t}|sJtd| dt| j d| S )aR  
    Ensure that argument passed in arg_name can be interpreted as boolean.

    Parameters
    ----------
    value : bool
        Value to be validated.
    arg_name : str
        Name of the argument. To be reflected in the error message.
    none_allowed : bool, default True
        Whether to consider None to be a valid boolean.
    int_allowed : bool, default False
        Whether to consider integer value to be a valid boolean.

    Returns
    -------
    value
        The same value as input.

    Raises
    ------
    ValueError
        If the value is not a valid boolean.
    NzFor argument "z$" expected type bool, received type .)r   
isinstanceintr   type__name__)r/   Zarg_namer0   r1   Z
good_valuer   r   r   validate_bool_kwarg   s    r7   )validate_scalar_dict_valuec                 C  s   ddl m} | dkr$|dkr$td| dkr>|dk	r>||}nR| dk	rx|dkrx|rt| ttfrtdt| j dn| dk	r|dk	rtd| |fS )a$  
    Validate the keyword arguments to 'fillna'.

    This checks that exactly one of 'value' and 'method' is specified.
    If 'method' is specified, this validates that it's a valid method.

    Parameters
    ----------
    value, method : object
        The 'value' and 'method' keyword arguments for 'fillna'.
    validate_scalar_dict_value : bool, default True
        Whether to validate that 'value' is a scalar or dict. Specifically,
        validate that it is not a list or tuple.

    Returns
    -------
    value, method : object
    r   )clean_fill_methodNz(Must specify a fill 'value' or 'method'.z>"value" parameter must be a scalar or dict, but you passed a ""z)Cannot specify both 'value' and 'method'.)	Zpandas.core.missingr9   r   r3   r%   r*   r   r5   r6   )r/   methodr8   r9   r   r   r   validate_fillna_kwargs
  s    
r<   zfloat | Iterable[float]z
np.ndarray)qr   c                 C  sj   t | }d}|jdkrBd|  kr,dksfn t||d n$tdd |D sft||d |S )a  
    Validate percentiles (used by describe and quantile).

    This function checks if the given float or iterable of floats is a valid percentile
    otherwise raises a ValueError.

    Parameters
    ----------
    q: float or iterable of floats
        A single percentile or an iterable of percentiles.

    Returns
    -------
    ndarray
        An ndarray of the percentiles if valid.

    Raises
    ------
    ValueError if percentiles are not in given interval([0, 1]).
    zApercentiles should all be in the interval [0, 1]. Try {} instead.r   r   g      Y@c                 s  s&   | ]}d |  kodkn  V  qdS )r   r   Nr   ).0qsr   r   r   	<genexpr>N  s     z&validate_percentile.<locals>.<genexpr>)npZasarrayndimr   formatall)r=   Zq_arrmsgr   r   r   validate_percentile1  s    

rF   )	ascendingr   c                 C  s   d S Nr   rG   r   r   r   validate_ascendingS  s    rJ   zSequence[BoolishT]zlist[BoolishT]c                 C  s   d S rH   r   rI   r   r   r   rJ   X  s    zbool | int | Sequence[BoolishT]zbool | int | list[BoolishT]c                   s4   ddd t | ts"t| df S  fdd| D S )z8Validate ``ascending`` kwargs for ``sort_index`` method.FT)r0   r1   rG   c                   s   g | ]}t |d f qS rI   )r7   )r>   itemr!   r   r   
<listcomp>e  s     z&validate_ascending.<locals>.<listcomp>)r3   r   r7   rI   r   rL   r   rJ   ]  s    

z
str | Noneztuple[bool, bool])closedr   c                 C  sF   d}d}| dkrd}d}n$| dkr(d}n| dkr6d}nt d||fS )a%  
    Check that the `closed` argument is among [None, "left", "right"]

    Parameters
    ----------
    closed : {None, "left", "right"}

    Returns
    -------
    left_closed : bool
    right_closed : bool

    Raises
    ------
    ValueError : if argument is not among valid values
    FNTleftrightz/Closed has to be either 'left', 'right' or None)r   )rN   Zleft_closedZright_closedr   r   r   validate_endpointsh  s    rQ   )	inclusiver   c                 C  s6   d}t | tr"ddddd| }|dkr2td|S )aD  
    Check that the `inclusive` argument is among {"both", "neither", "left", "right"}.

    Parameters
    ----------
    inclusive : {"both", "neither", "left", "right"}

    Returns
    -------
    left_right_inclusive : tuple[bool, bool]

    Raises
    ------
    ValueError : if argument is not among valid values
    N)TT)TF)FT)FF)ZbothrO   rP   Zneitherz?Inclusive has to be either 'both', 'neither', 'left' or 'right')r3   strgetr   )rR   Zleft_right_inclusiver   r   r   validate_inclusive  s    
rU   r4   )loclengthr   c                 C  sZ   t | std| d| | dk r,| |7 } d|   kr@|ksVn td| d| | S )z
    Check that we have an integer between -length and length, inclusive.

    Standardize negative loc to within [0, length].

    The exceptions we raise on failure match np.insert.
    z loc must be an integer between -z and r   )r	   r   
IndexError)rV   rW   r   r   r   validate_insert_loc  s    rY   c                 C  s&   | t jk	r"| dkr"td|  dd S )N)Znumpy_nullableZpyarrowzdtype_backend z= is invalid, only 'numpy_nullable' and 'pyarrow' are allowed.)r   Z
no_defaultr   )Zdtype_backendr   r   r   check_dtype_backend  s
    

rZ   )TF)T)!__doc__
__future__r   typingr   r   r   r   ZnumpyrA   Zpandas._libsr   Zpandas.core.dtypes.commonr   r	   r.   r4   r
   r   r   r   r"   r&   r)   r-   r7   r<   rF   rJ   rQ   rU   rY   rZ   r   r   r   r   <module>   s6   &);   *'"!"