U
    GvfY                     @  sj  d dl mZ d dlmZmZmZmZmZmZ d dl	Z	d dl
Zd dlZd dlZd dlZd dlmZ d dlmZ d dlmZmZ d dlmZ dd	d
dddddddddgZdddZdddZG dd deZerd dlmZ G dd deZneZdddddZed d! Ze  e_!dd$dZ"dd&d'Z#dd,d	Z$d-d. Z%dd/dZ&dd0dZ'd1d2 Z(dd4dZ)dd5dZ*dd6dZ+d7d8 Z,d9d: Z-d;d< Z.dd?d
Z/d+d@d+d+gddAfd+dBd+dCd+gddDfdBdEd+dBdBd+gdFdGfd@dHdIdJdAdJdIgdKdLfd#dMdNdOd)d)dOdNgdPdQfd+dRdSdTdUdVdUdTdSgdWdXfdIdYdZd[d\d]d]d\d[dZgd^d_fdCd`dadbdcdddedddcdbdag	dfdgfdhdidjdkdldmdndndmdldkdjg
dodpfd#dqdrdsdtdudvdwdvdudtdsdrgdxdyfdzd{d|d}d~ddddddd~d}d|gddfd+ddddddddddddddgddfddddddddddddddddgddfdIddddddddddddddddgddfdZ0dddZ1dd Z2edddgZ3ddEdd%ddddZ4dS )    )annotations)TYPE_CHECKINGCallableDictTupleAnycastN)
namedtuple)roots_legendre)gammaln	logsumexp)
_rng_spawn
fixed_quad
quadraturerombergromb	trapezoidtrapzsimpssimpsoncumulative_trapezoidcumtrapznewton_cotesAccuracyWarning      ?c                 C  s2   t tdrtj| |||dS tj| |||dS dS )a  
    Integrate along the given axis using the composite trapezoidal rule.

    If `x` is provided, the integration happens in sequence along its
    elements - they are not sorted.

    Integrate `y` (`x`) along each 1d slice on the given axis, compute
    :math:`\int y(x) dx`.
    When `x` is specified, this integrates along the parametric curve,
    computing :math:`\int_t y(t) dt =
    \int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`.

    Parameters
    ----------
    y : array_like
        Input array to integrate.
    x : array_like, optional
        The sample points corresponding to the `y` values. If `x` is None,
        the sample points are assumed to be evenly spaced `dx` apart. The
        default is None.
    dx : scalar, optional
        The spacing between sample points when `x` is None. The default is 1.
    axis : int, optional
        The axis along which to integrate.

    Returns
    -------
    trapezoid : float or ndarray
        Definite integral of `y` = n-dimensional array as approximated along
        a single axis by the trapezoidal rule. If `y` is a 1-dimensional array,
        then the result is a float. If `n` is greater than 1, then the result
        is an `n`-1 dimensional array.

    See Also
    --------
    cumulative_trapezoid, simpson, romb

    Notes
    -----
    Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
    will be taken from `y` array, by default x-axis distances between
    points will be 1.0, alternatively they can be provided with `x` array
    or with `dx` scalar.  Return value will be equal to combined area under
    the red lines.

    References
    ----------
    .. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule

    .. [2] Illustration image:
           https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

    Examples
    --------
    Use the trapezoidal rule on evenly spaced points:

    >>> import numpy as np
    >>> from scipy import integrate
    >>> integrate.trapezoid([1, 2, 3])
    4.0

    The spacing between sample points can be selected by either the
    ``x`` or ``dx`` arguments:

    >>> integrate.trapezoid([1, 2, 3], x=[4, 6, 8])
    8.0
    >>> integrate.trapezoid([1, 2, 3], dx=2)
    8.0

    Using a decreasing ``x`` corresponds to integrating in reverse:

    >>> integrate.trapezoid([1, 2, 3], x=[8, 6, 4])
    -8.0

    More generally ``x`` is used to integrate along a parametric curve. We can
    estimate the integral :math:`\int_0^1 x^2 = 1/3` using:

    >>> x = np.linspace(0, 1, num=50)
    >>> y = x**2
    >>> integrate.trapezoid(y, x)
    0.33340274885464394

    Or estimate the area of a circle, noting we repeat the sample which closes
    the curve:

    >>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
    >>> integrate.trapezoid(np.cos(theta), x=np.sin(theta))
    3.141571941375841

    ``trapezoid`` can be applied along a specified axis to do multiple
    computations in one call:

    >>> a = np.arange(6).reshape(2, 3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> integrate.trapezoid(a, axis=0)
    array([1.5, 2.5, 3.5])
    >>> integrate.trapezoid(a, axis=1)
    array([2.,  8.])
    r   xdxaxisN)hasattrnpr   r   yr   r   r    r$   ?/tmp/pip-unpacked-wheel-96ln3f52/scipy/integrate/_quadrature.pyr      s    h
c                 C  s   t | |||dS )z}An alias of `trapezoid`.

    `trapz` is kept for backwards compatibility. For new code, prefer
    `trapezoid` instead.
    r   )r   r"   r$   r$   r%   r      s    c                   @  s   e Zd ZdS )r   N)__name__
__module____qualname__r$   r$   r$   r%   r      s   )Protocolc                   @  s   e Zd ZU ded< dS )CacheAttributeszDict[int, Tuple[Any, Any]]cacheN)r&   r'   r(   __annotations__r$   r$   r$   r%   r*      s   
r*   r   )funcreturnc                 C  s
   t t| S N)r   r*   r-   r$   r$   r%   cache_decorator   s    r1   c                 C  s,   | t jkrt j|  S t| t j| < t j|  S )zX
    Cache roots_legendre results to speed up calls of the fixed_quad
    function.
    )_cached_roots_legendrer+   r
   )nr$   r$   r%   r2      s    

r2   r$      c                 C  sv   t |\}}t|}t|s*t|r2td|| |d  d | }|| d tj|| |f|  dd dfS )a  
    Compute a definite integral using fixed-order Gaussian quadrature.

    Integrate `func` from `a` to `b` using Gaussian quadrature of
    order `n`.

    Parameters
    ----------
    func : callable
        A Python function or method to integrate (must accept vector inputs).
        If integrating a vector-valued function, the returned array must have
        shape ``(..., len(x))``.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.
    args : tuple, optional
        Extra arguments to pass to function, if any.
    n : int, optional
        Order of quadrature integration. Default is 5.

    Returns
    -------
    val : float
        Gaussian quadrature approximation to the integral
    none : None
        Statically returned value of None

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    dblquad : double integrals
    tplquad : triple integrals
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    romb : integrators for sampled data
    simpson : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrator
    odeint : ODE integrator

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> f = lambda x: x**8
    >>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
    (0.1110884353741496, None)
    >>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
    (0.11111111111111102, None)
    >>> print(1/9.0)  # analytical result
    0.1111111111111111

    >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
    (0.9999999771971152, None)
    >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
    (1.000000000039565, None)
    >>> np.sin(np.pi/2)-np.sin(0)  # analytical result
    1.0

    z8Gaussian quadrature is only available for finite limits.          @r   r   N)r2   r!   realisinf
ValueErrorsum)r-   abargsr3   r   wr#   r$   r$   r%   r      s    >
Fc                   s&   |r fdd}n fdd}|S )ao  Vectorize the call to a function.

    This is an internal utility function used by `romberg` and
    `quadrature` to create a vectorized version of a function.

    If `vec_func` is True, the function `func` is assumed to take vector
    arguments.

    Parameters
    ----------
    func : callable
        User defined function.
    args : tuple, optional
        Extra arguments for the function.
    vec_func : bool, optional
        True if the function func takes vector arguments.

    Returns
    -------
    vfunc : callable
        A function that will take a vector argument and return the
        result.

    c                   s   | f  S r/   r$   r   r>   r-   r$   r%   vfunc  s    zvectorize1.<locals>.vfuncc                   s   t | r| f  S t | } | d f  }t| }t|dt|}t j|f|d}||d< td|D ]}| | f  ||< qn|S )Nr   dtyperC   r5   )r!   isscalarasarraylengetattrtypeemptyrange)r   Zy0r3   rC   outputirA   r$   r%   rB     s    

r$   )r-   r>   vec_funcrB   r$   rA   r%   
vectorize1   s    rO   "\O>2   Tr5   c	                 C  s   t |ts|f}t| ||d}	tj}
tj}t|d |}t||d D ]D}t|	||d|d }t||
 }|}
||k s||t|
 k rF qqFt	
d||f t |
|fS )a  
    Compute a definite integral using fixed-tolerance Gaussian quadrature.

    Integrate `func` from `a` to `b` using Gaussian quadrature
    with absolute tolerance `tol`.

    Parameters
    ----------
    func : function
        A Python function or method to integrate.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.
    args : tuple, optional
        Extra arguments to pass to function.
    tol, rtol : float, optional
        Iteration stops when error between last two iterates is less than
        `tol` OR the relative change is less than `rtol`.
    maxiter : int, optional
        Maximum order of Gaussian quadrature.
    vec_func : bool, optional
        True or False if func handles arrays as arguments (is
        a "vector" function). Default is True.
    miniter : int, optional
        Minimum order of Gaussian quadrature.

    Returns
    -------
    val : float
        Gaussian quadrature approximation (within tolerance) to integral.
    err : float
        Difference between last two estimates of the integral.

    See Also
    --------
    romberg : adaptive Romberg quadrature
    fixed_quad : fixed-order Gaussian quadrature
    quad : adaptive quadrature using QUADPACK
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrator for sampled data
    simpson : integrator for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrator
    odeint : ODE integrator

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> f = lambda x: x**8
    >>> integrate.quadrature(f, 0.0, 1.0)
    (0.11111111111111106, 4.163336342344337e-17)
    >>> print(1/9.0)  # analytical result
    0.1111111111111111

    >>> integrate.quadrature(np.cos, 0.0, np.pi/2)
    (0.9999999999999536, 3.9611425250996035e-11)
    >>> np.sin(np.pi/2)-np.sin(0)  # analytical result
    1.0

    rN   r5   r$   r   z-maxiter (%d) exceeded. Latest difference = %e)
isinstancetuplerO   r!   infmaxrK   r   abswarningswarnr   )r-   r<   r=   r>   tolrtolmaxiterrN   ZminiterrB   valerrr3   Znewvalr$   r$   r%   r   %  s"    A

c                 C  s   t | }|||< t|S r/   )listrT   )trM   valuelr$   r$   r%   tuplesetz  s    rc   c                 C  s   t | ||||dS )zAn alias of `cumulative_trapezoid`.

    `cumtrapz` is kept for backwards compatibility. For new code, prefer
    `cumulative_trapezoid` instead.
    )r   r   r   initial)r   )r#   r   r   r   rd   r$   r$   r%   r     s    c                 C  sZ  t | } |dkr|}nt |}|jdkrVt |}dg| j }d||< ||}n,t|jt| jkrttdnt j||d}|j| | j| d krtdt| j}tt	df| |t	dd}tt	df| |t	dd}	t j
|| | | |	   d |d}
|dk	rVt |s$tdt|
j}d||< t jt j|||
jd	|
g|d}
|
S )
a  
    Cumulatively integrate y(x) using the composite trapezoidal rule.

    Parameters
    ----------
    y : array_like
        Values to integrate.
    x : array_like, optional
        The coordinate to integrate along. If None (default), use spacing `dx`
        between consecutive elements in `y`.
    dx : float, optional
        Spacing between elements of `y`. Only used if `x` is None.
    axis : int, optional
        Specifies the axis to cumulate. Default is -1 (last axis).
    initial : scalar, optional
        If given, insert this value at the beginning of the returned result.
        Typically this value should be 0. Default is None, which means no
        value at ``x[0]`` is returned and `res` has one element less than `y`
        along the axis of integration.

    Returns
    -------
    res : ndarray
        The result of cumulative integration of `y` along `axis`.
        If `initial` is None, the shape is such that the axis of integration
        has one less value than `y`. If `initial` is given, the shape is equal
        to that of `y`.

    See Also
    --------
    numpy.cumsum, numpy.cumprod
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrators for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(-2, 2, num=20)
    >>> y = x
    >>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
    >>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
    >>> plt.show()

    Nr5   r   2If given, shape of x must be 1-D or the same as y.r7   7If given, length of x along axis must be the same as y.r6   z'`initial` parameter should be a scalar.rD   )r!   rF   ndimdiffreshaperG   shaper:   rc   sliceZcumsumrE   r_   ZconcatenatefullrC   )r#   r   r   r   rd   drj   ndslice1slice2resr$   r$   r%   r     s6    7





"

c              
   C  s  t | j}|d krd}d}td f| }t||t|||}	t||t|d |d |}
t||t|d |d |}|d krtj| |	 d| |
   | |  |d}||d 9 }ntj||d}t||t|||}t||t|d |d |}t|| }t|| }|| }|| }tj||t	||dkd}|d | |	 d	tjd
|t	||dkd  | |
 |tj||t	||dkd   | | d	|    }tj||d}|S )Nr      r5         @r7         @)outwhereg      @r6   r   )
rG   rj   rk   rc   r!   r;   rh   Zfloat64Ztrue_divideZ
zeros_like)r#   startstopr   r   r   rn   step	slice_allslice0ro   rp   resulthZsl0Zsl1Zh0h1ZhsumZhprodZh0divh1tmpr$   r$   r%   _basic_simpson  sH    
&
	r   avgc                 C  s   t | ||||dS )zyAn alias of `simpson`.

    `simps` is kept for backwards compatibility. For new code, prefer
    `simpson` instead.
    )r   r   r   even)r   )r#   r   r   r   r   r$   r$   r%   r     s    c                 C  s&  t | } t| j}| j| }|}|}d}	|dk	rt |}t|jdkr|dg| }
|jd |
|< |j}d}	|t|
}nt|jt| jkrtd|j| |krtd|d dkrd}d}tdf| }tdf| }|dkrtd	|d
kr^t||d}t||d}|dk	r,|| ||  }|d| | | | |   7 }t	| d|d |||}|dkrt||d}t||d}|dk	r|t| |t|  }|d| | | | |   7 }|t	| d|d |||7 }|dkr|d }|d }|| }nt	| d|d |||}|	r"||}|S )a	  
    Integrate y(x) using samples along the given axis and the composite
    Simpson's rule. If x is None, spacing of dx is assumed.

    If there are an even number of samples, N, then there are an odd
    number of intervals (N-1), but Simpson's rule requires an even number
    of intervals. The parameter 'even' controls how this is handled.

    Parameters
    ----------
    y : array_like
        Array to be integrated.
    x : array_like, optional
        If given, the points at which `y` is sampled.
    dx : float, optional
        Spacing of integration points along axis of `x`. Only used when
        `x` is None. Default is 1.
    axis : int, optional
        Axis along which to integrate. Default is the last axis.
    even : str {'avg', 'first', 'last'}, optional
        'avg' : Average two results:1) use the first N-2 intervals with
                  a trapezoidal rule on the last interval and 2) use the last
                  N-2 intervals with a trapezoidal rule on the first interval.

        'first' : Use Simpson's rule for the first N-2 intervals with
                a trapezoidal rule on the last interval.

        'last' : Use Simpson's rule for the last N-2 intervals with a
               trapezoidal rule on the first interval.

    Returns
    -------
    float
        The estimated integral computed with the composite Simpson's rule.

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Notes
    -----
    For an odd number of samples that are equally spaced the result is
    exact if the function is a polynomial of order 3 or less. If
    the samples are not equally spaced, then the result is exact only
    if the function is a polynomial of order 2 or less.

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> x = np.arange(0, 10)
    >>> y = np.arange(0, 10)

    >>> integrate.simpson(y, x)
    40.5

    >>> y = np.power(x, 3)
    >>> integrate.simpson(y, x)
    1642.5
    >>> integrate.quad(lambda x: x**3, 0, 9)[0]
    1640.25

    >>> integrate.simpson(y, x, even='first')
    1644.5

    r   Nr5   re   rf   rr   g        )r   lastfirstz3Parameter 'even' must be 'avg', 'last', or 'first'.)r   r   r         ?   )r   r   r   r6   )
r!   rF   rG   rj   ri   rT   r:   rk   rc   r   )r#   r   r   r   r   rn   NZlast_dxZfirst_dxZreturnshapeZshapexZ	saveshaper]   r|   ro   rp   r$   r$   r%   r     s^    L











c              	   C  s  t | } t| j}| j| }|d }d}d}||k rH|dK }|d7 }q.||krXtdi }	tdf| }
t|
|d}t|
|d}|t j|td }| | | |  d | |	d< |
}| } }}td|d D ]}|dL }t||t|||}|dL }d	|	|d df || | j	|d
   |	|df< td|d D ]J}|	||d f }|||	|d |d f  dd| > d   |	||f< q4|d }q|rt 
|	d std nz|d }W n ttfk
r   d}Y nX z|d }W n ttfk
r    d}Y nX d||f }d}t|dt| ddd t|d D ]8}t|d D ]}t||	||f  dd qFt  q6tdt|  |	||f S )a  
    Romberg integration using samples of a function.

    Parameters
    ----------
    y : array_like
        A vector of ``2**k + 1`` equally-spaced samples of a function.
    dx : float, optional
        The sample spacing. Default is 1.
    axis : int, optional
        The axis along which to integrate. Default is -1 (last axis).
    show : bool, optional
        When `y` is a single 1-D array, then if this argument is True
        print the table showing Richardson extrapolation from the
        samples. Default is False.

    Returns
    -------
    romb : ndarray
        The integrated result for `axis`.

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    simpson : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> x = np.arange(10, 14.25, 0.25)
    >>> y = np.arange(3, 12)

    >>> integrate.romb(y)
    56.0

    >>> y = np.sin(np.power(x, 2.5))
    >>> integrate.romb(y)
    -0.742561336672229

    >>> integrate.romb(y, show=True)
    Richardson Extrapolation Table for Romberg Integration
    ======================================================
    -0.81576
     4.63862  6.45674
    -1.10581 -3.02062 -3.65245
    -2.57379 -3.06311 -3.06595 -3.05664
    -1.34093 -0.92997 -0.78776 -0.75160 -0.74256
    ======================================================
    -0.742561336672229  # may vary

    r5   r   z=Number of samples must be one plus a non-negative power of 2.Nr   rD   r6   )r   r   r   r7   rr   zE*** Printing table only supported for integrals of a single data set.r4      z%%%d.%dfz6Richardson Extrapolation Table for Romberg Integration=
)sepend r   )r!   rF   rG   rj   r:   rk   rc   floatrK   r;   rE   print	TypeError
IndexError)r#   r   r   showrn   ZNsampsZNintervr3   kRrz   r{   Zslicem1r}   Zslice_Rrw   rx   ry   rM   jprevZpreciswidthZformstrtitler$   r$   r%   r     s`    =



08




c                 C  s   |dkrt dn||dkr6d| |d | |d   S |d }t|d |d  | }|d d|  }||t|  }tj| |dd}|S dS )aU  
    Perform part of the trapezoidal rule to integrate a function.
    Assume that we had called difftrap with all lower powers-of-2
    starting with 1. Calling difftrap only returns the summation
    of the new ordinates. It does _not_ multiply by the width
    of the trapezoids. This must be performed by the caller.
        'function' is the function to evaluate (must accept vector arguments).
        'interval' is a sequence with lower and upper limits
                   of integration.
        'numtraps' is the number of trapezoids to use (must be a
                   power-of-2).
    r   z#numtraps must be > 0 in difftrap().r5   r   rr   r7   N)r:   r   r!   aranger;   )functionintervalZnumtrapsZnumtosumr}   ZloxZpointssr$   r$   r%   	_difftrap  s    
r   c                 C  s   d| }|| |  |d  S )z
    Compute the differences for the Romberg quadrature corrections.
    See Forman Acton's "Real Computing Made Real," p 143.
    rs   r   r$   )r=   cr   r   r$   r$   r%   _romberg_diff6  s    r   c                 C  s   d }}t dt| dd t d| t d t dd  tt|D ]b}t d	d
| |d |d  d|  f dd t|d D ]}t d|| |  dd qt d qDt d t d|| | dd t dd
t|d  d d d S )Nr   zRomberg integration ofr   r   from z%6s %9s %9s)ZStepsZStepSizeZResultsz%6d %9frr   r5   r6   z%9fzThe final result isafterzfunction evaluations.)r   reprrK   rG   )r   r   resmatrM   r   r$   r$   r%   _printresmat?  s    
,
r   `sbO>
   c	              	   C  sL  t |st |rtdt| ||d}	d}
||g}|| }t|	||
}|| }|gg}t j}|d }td|d D ]}|
d9 }
|t|	||
7 }|| |
 g}t|D ]"}|t|| || |d  q|| }||d  }|r|| t	|| }||k s||t	| k r q6|}qvt
d||f t |rHt|	|| |S )a
  
    Romberg integration of a callable function or method.

    Returns the integral of `function` (a function of one variable)
    over the interval (`a`, `b`).

    If `show` is 1, the triangular array of the intermediate results
    will be printed. If `vec_func` is True (default is False), then
    `function` is assumed to support vector arguments.

    Parameters
    ----------
    function : callable
        Function to be integrated.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.

    Returns
    -------
    results : float
        Result of the integration.

    Other Parameters
    ----------------
    args : tuple, optional
        Extra arguments to pass to function. Each element of `args` will
        be passed as a single argument to `func`. Default is to pass no
        extra arguments.
    tol, rtol : float, optional
        The desired absolute and relative tolerances. Defaults are 1.48e-8.
    show : bool, optional
        Whether to print the results. Default is False.
    divmax : int, optional
        Maximum order of extrapolation. Default is 10.
    vec_func : bool, optional
        Whether `func` handles arrays as arguments (i.e., whether it is a
        "vector" function). Default is False.

    See Also
    --------
    fixed_quad : Fixed-order Gaussian quadrature.
    quad : Adaptive quadrature using QUADPACK.
    dblquad : Double integrals.
    tplquad : Triple integrals.
    romb : Integrators for sampled data.
    simpson : Integrators for sampled data.
    cumulative_trapezoid : Cumulative integration for sampled data.
    ode : ODE integrator.
    odeint : ODE integrator.

    References
    ----------
    .. [1] 'Romberg's method' https://en.wikipedia.org/wiki/Romberg%27s_method

    Examples
    --------
    Integrate a gaussian from 0 to 1 and compare to the error function.

    >>> from scipy import integrate
    >>> from scipy.special import erf
    >>> import numpy as np
    >>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
    >>> result = integrate.romberg(gaussian, 0, 1, show=True)
    Romberg integration of <function vfunc at ...> from [0, 1]

    ::

       Steps  StepSize  Results
           1  1.000000  0.385872
           2  0.500000  0.412631  0.421551
           4  0.250000  0.419184  0.421368  0.421356
           8  0.125000  0.420810  0.421352  0.421350  0.421350
          16  0.062500  0.421215  0.421350  0.421350  0.421350  0.421350
          32  0.031250  0.421317  0.421350  0.421350  0.421350  0.421350  0.421350

    The final result is 0.421350396475 after 33 function evaluations.

    >>> print("%g %g" % (2*result, erf(1)))
    0.842701 0.842701

    z5Romberg integration only available for finite limits.rR   r5   r   rr   z,divmax (%d) exceeded. Latest difference = %e)r!   r9   r:   rO   r   rU   rK   appendr   rW   rX   rY   r   r   )r   r<   r=   r>   rZ   r[   r   ZdivmaxrN   rB   r3   r   ZintrangeZordsumr|   r   r^   Zlast_rowrM   rowr   Z
lastresultr$   r$   r%   r   P  s@    U 

rr      r      Z   r   P   -          ii  i      K   ii@/     )         i  iix  iC  i  i  i+  i  i	i  i_7  i  i   i`i )  iDii?# 	   i ^ i)  i}=  i8  iK  i  ii  ip i>  i< isBi( i:ih iii0	   i 0iI"! i iiijmii l&	 l    7 iR0P i i@ i7i@!i!Nid7ipRi<ic]    l    `5]vl   v[O l   =H/54 l+w l   "- lMp: l   {> l$MY( l`: l    @	Al   @d@* ii`ip`*iol   Fg! lf l   \a lLR l   @` lx= l   7-)r5   rr   r   r   r4      r   r   r   r   r   r   r      c                 C  s  z<t | d }|r"t|d } ntt| dkr:d}W n* tk
rf   | }t|d } d}Y nX |r|tkrt| \}}}}}|tj|td | }|t|| fS | d dks| d |krt	d| t| }	d|	 d }
t|d }|
|ddtj
f  }tj|}tdD ]}d| ||| }qd|ddd d  }|dddddf ||d  }|d dkr|r||d	  }|d }n||d  }|d }|t|	| | }|d }|t| t| }t|}||| fS )
a  
    Return weights and error coefficient for Newton-Cotes integration.

    Suppose we have (N+1) samples of f at the positions
    x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
    integral between x_0 and x_N is:

    :math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
    + B_N (\Delta x)^{N+2} f^{N+1} (\xi)`

    where :math:`\xi \in [x_0,x_N]`
    and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.

    If the samples are equally-spaced and N is even, then the error
    term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.

    Parameters
    ----------
    rn : int
        The integer order for equally-spaced data or the relative positions of
        the samples with the first sample at 0 and the last at N, where N+1 is
        the length of `rn`. N is the order of the Newton-Cotes integration.
    equal : int, optional
        Set to 1 to enforce equally spaced data.

    Returns
    -------
    an : ndarray
        1-D array of weights to apply to the function at the provided sample
        positions.
    B : float
        Error coefficient.

    Notes
    -----
    Normally, the Newton-Cotes rules are used on smaller integration
    regions and a composite rule is used to return the total integral.

    Examples
    --------
    Compute the integral of sin(x) in [0, :math:`\pi`]:

    >>> from scipy.integrate import newton_cotes
    >>> import numpy as np
    >>> def f(x):
    ...     return np.sin(x)
    >>> a = 0
    >>> b = np.pi
    >>> exact = 2
    >>> for N in [2, 4, 6, 8, 10]:
    ...     x = np.linspace(a, b, N + 1)
    ...     an, B = newton_cotes(N, 1)
    ...     dx = (b - a) / N
    ...     quad = dx * np.sum(an * f(x))
    ...     error = abs(quad - exact)
    ...     print('{:2d}  {:10.9f}  {:.5e}'.format(N, quad, error))
    ...
     2   2.094395102   9.43951e-02
     4   1.998570732   1.42927e-03
     6   2.000017814   1.78136e-05
     8   1.999999835   1.64725e-07
    10   2.000000001   1.14677e-09

    r5   rD   r   r   z1The sample positions must start at 0 and end at Nrr   Nr6   rt   )rG   r!   r   allrh   	Exception_builtincoeffsarrayr   r:   ZnewaxisZlinalginvrK   dotmathlogr   exp)Zrnequalr   nadavinbdbZanyiZtiZnvecCZCinvrM   ZvecZaiBNpowerp1Zfacr$   r$   r%   r     sF    A
$

c              
     s  t tdsddlm} |t_ntj}t s8d}t|t| }t| }t	||\}}|j
d }	z || d  W n0 tk
r }
 zd}t||
W 5 d }
~
X Y nX z t||g  }W nJ tk
r }
 z*d|
 d}tj|d	d
  fdd}W 5 d }
~
X Y nX t|}||kr:d}t|t|}||krZd}t||d krr|j|	}nt||jjsd}t||j|j
d krd}t|t|dd }|j|}|dkrd}t||||||||||f	S )Nqmcr   )statsz`func` must be callable.rr   z`func` must evaluate the integrand at points within the integration range; e.g. `func( (a + b) / 2)` must return the integrand at the centroid of the integration volume.zAException encountered when attempting vectorized call to `func`: z. `func` should accept two-dimensional array with shape `(n_points, len(a))` and return an array with the integrand value at each of the `n_points` for better performance.r   
stacklevelc                   s   t j d| dS )Nr   )r   Zarr)r!   Zapply_along_axisr@   r0   r$   r%   rB     s    z_qmc_quad_iv.<locals>.vfuncz`n_points` must be an integer.z!`n_estimates` must be an integer.z8`qrng` must be an instance of scipy.stats.qmc.QMCEngine.z`qrng` must be initialized with dimensionality equal to the number of variables in `a`, i.e., `qrng.random().shape[-1]` must equal `a.shape[0]`.rng_seed>   FTz*`log` must be boolean (`True` or `False`).)r    	_qmc_quadZscipyr   callabler   r!   Z
atleast_1dcopyZbroadcast_arraysrj   r   r:   r   rX   rY   Zint64r   ZHaltonrS   Z	QMCEnginerm   rH   Z_qmcZcheck_random_state)r-   r<   r=   n_pointsn_estimatesqrngr   r   messageZdimerB   Zn_points_intZn_estimates_intr   rngr$   r0   r%   _qmc_quad_ivs  sZ    







r   QMCQuadResultintegralstandard_errori   )r   r   r   r   r>   c             	   C  s~  t | ||||||}|\	} }}}}}}}}	t||kr`d}
tj|
dd t|rXtj nddS ||k }d|jdd }|| ||  ||< ||< t|| }|| }t	|}t
|j|}t|D ]r}||}|	j|||}| |}|rt|t| }nt|| }|||< t|f d|| i|j}qt|}|rb|dk rb|tjd  n|| }|	|}t||S )	a  
    Compute an integral in N-dimensions using Quasi-Monte Carlo quadrature.

    Parameters
    ----------
    func : callable
        The integrand. Must accept a single arguments `x`, an array which
        specifies the point at which to evaluate the integrand. For efficiency,
        the function should be vectorized to compute the integrand for each
        element an array of shape ``(n_points, n)``, where ``n`` is number of
        variables.
    a, b : array-like
        One-dimensional arrays specifying the lower and upper integration
        limits, respectively, of each of the ``n`` variables.
    n_points, n_estimates : int, optional
        One QMC sample of `n_points` (default: 256) points will be generated
        by `qrng`, and `n_estimates` (default: 8) statistically independent
        estimates of the integral will be produced. The total number of points
        at which the integrand `func` will be evaluated is
        ``n_points * n_estimates``. See Notes for details.
    qrng : `~scipy.stats.qmc.QMCEngine`, optional
        An instance of the QMCEngine from which to sample QMC points.
        The QMCEngine must be initialized to a number of dimensions
        corresponding with the number of variables ``x0, ..., xn`` passed to
        `func`.
        The provided QMCEngine is used to produce the first integral estimate.
        If `n_estimates` is greater than one, additional QMCEngines are
        spawned from the first (with scrambling enabled, if it is an option.)
        If a QMCEngine is not provided, the default `scipy.stats.qmc.Halton`
        will be initialized with the number of dimensions determine from
        `a`.
    log : boolean, default: False
        When set to True, `func` returns the log of the integrand, and
        the result object contains the log of the integral.

    Returns
    -------
    result : object
        A result object with attributes:

        integral : float
            The estimate of the integral.
        standard_error :
            The error estimate. See Notes for interpretation.

    Notes
    -----
    Values of the integrand at each of the `n_points` points of a QMC sample
    are used to produce an estimate of the integral. This estimate is drawn
    from a population of possible estimates of the integral, the value of
    which we obtain depends on the particular points at which the integral
    was evaluated. We perform this process `n_estimates` times, each time
    evaluating the integrand at different scrambled QMC points, effectively
    drawing i.i.d. random samples from the population of integral estimates.
    The sample mean :math:`m` of these integral estimates is an
    unbiased estimator of the true value of the integral, and the standard
    error of the mean :math:`s` of these estimates may be used to generate
    confidence intervals using the t distribution with ``n_estimates - 1``
    degrees of freedom. Perhaps counter-intuitively, increasing `n_points`
    while keeping the total number of function evaluation points
    ``n_points * n_estimates`` fixed tends to reduce the actual error, whereas
    increasing `n_estimates` tends to decrease the error estimate.

    Examples
    --------
    QMC quadrature is particularly useful for computing integrals in higher
    dimensions. An example integrand is the probability density function
    of a multivariate normal distribution.

    >>> import numpy as np
    >>> from scipy import stats
    >>> dim = 8
    >>> mean = np.zeros(dim)
    >>> cov = np.eye(dim)
    >>> def func(x):
    ...     return stats.multivariate_normal.pdf(x, mean, cov)

    To compute the integral over the unit hypercube:

    >>> from scipy.integrate import qmc_quad
    >>> a = np.zeros(dim)
    >>> b = np.ones(dim)
    >>> rng = np.random.default_rng()
    >>> qrng = stats.qmc.Halton(d=dim, seed=rng)
    >>> n_estimates = 8
    >>> res = qmc_quad(func, a, b, n_estimates=n_estimates, qrng=qrng)
    >>> res.integral, res.standard_error
    (0.00018441088533413305, 1.1255608140911588e-07)

    A two-sided, 99% confidence interval for the integral may be estimated
    as:

    >>> t = stats.t(df=n_estimates-1, loc=res.integral,
    ...             scale=res.standard_error)
    >>> t.interval(0.99)
    (0.00018401699720722663, 0.00018480477346103947)

    Indeed, the value reported by `scipy.stats.multivariate_normal` is
    within this range.

    >>> stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
    0.00018430867675187443

    z^A lower limit was equal to an upper limit, so the value of the integral is zero by definition.rr   r   r   r   r7   seedy              ?)r   r!   anyrX   rY   r   rU   r;   prodzerosr   r   rK   randomr   Zscaler   r   rI   Z
_init_quadZmeanpiZsem)r-   r<   r=   r   r   r   r   r>   r   r   r   Zi_swapsignAZdAZ	estimatesZrngsrM   sampler   Z
integrandsZestimater   r   r$   r$   r%   r     s4    j


&
r   )Nr   r   )Nr   r   )r$   r4   )r$   F)r$   rP   rP   rQ   Tr5   )Nr   r   N)Nr   r   N)Nr   r   r   )Nr   r   r   )r   r   F)r$   r   r   Fr   F)r   )5
__future__r   typingr   r   r   r   r   r   	functoolsZnumpyr!   r   typesrX   collectionsr	   Zscipy.specialr
   r   r   Zscipy._lib._utilr   __all__r   r   Warningr   r)   r*   r1   r2   dictr+   r   rO   r   rc   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r$   r$   r$   r%   <module>   s&        
p
	

G
-    
U
	
]'
	
 
 	    
                      
               #
mJ 