U
    Gvfj                      @   s\   d dl Zd dlmZ ddlmZmZmZ ddlm	Z	m
Z
 G dd de	ZG dd	 d	e
ZdS )
    N)ode   )validate_tolvalidate_first_stepwarn_extraneous)	OdeSolverDenseOutputc                	       sF   e Zd ZdZddejddddddf	 fdd	Zd	d
 Zdd Z  Z	S )LSODAa  Adams/BDF method with automatic stiffness detection and switching.

    This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
    automatically between the nonstiff Adams method and the stiff BDF method.
    The method was originally detailed in [2]_.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system. The calling signature is ``fun(t, y)``.
        Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
        It can either have shape (n,); then ``fun`` must return array_like with
        shape (n,). Alternatively it can have shape (n, k); then ``fun``
        must return an array_like with shape (n, k), i.e. each column
        corresponds to a single column in ``y``. The choice between the two
        options is determined by `vectorized` argument (see below). The
        vectorized implementation allows a faster approximation of the Jacobian
        by finite differences (required for this solver).
    t0 : float
        Initial time.
    y0 : array_like, shape (n,)
        Initial state.
    t_bound : float
        Boundary time - the integration won't continue beyond it. It also
        determines the direction of the integration.
    first_step : float or None, optional
        Initial step size. Default is ``None`` which means that the algorithm
        should choose.
    min_step : float, optional
        Minimum allowed step size. Default is 0.0, i.e., the step size is not
        bounded and determined solely by the solver.
    max_step : float, optional
        Maximum allowed step size. Default is np.inf, i.e., the step size is not
        bounded and determined solely by the solver.
    rtol, atol : float and array_like, optional
        Relative and absolute tolerances. The solver keeps the local error
        estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
        relative accuracy (number of correct digits), while `atol` controls
        absolute accuracy (number of correct decimal places). To achieve the
        desired `rtol`, set `atol` to be smaller than the smallest value that
        can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
        allowable error. If `atol` is larger than ``rtol * abs(y)`` the
        number of correct digits is not guaranteed. Conversely, to achieve the
        desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
        than `atol`. If components of y have different scales, it might be
        beneficial to set different `atol` values for different components by
        passing array_like with shape (n,) for `atol`. Default values are
        1e-3 for `rtol` and 1e-6 for `atol`.
    jac : None or callable, optional
        Jacobian matrix of the right-hand side of the system with respect to
        ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
        equal to ``d f_i / d y_j``. The function will be called as
        ``jac(t, y)``. If None (default), the Jacobian will be
        approximated by finite differences. It is generally recommended to
        provide the Jacobian rather than relying on a finite-difference
        approximation.
    lband, uband : int or None
        Parameters defining the bandwidth of the Jacobian,
        i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
        these requires your jac routine to return the Jacobian in the packed format:
        the returned array must have ``n`` columns and ``uband + lband + 1``
        rows in which Jacobian diagonals are written. Specifically
        ``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
        in `scipy.linalg.solve_banded` (check for an illustration).
        These parameters can be also used with ``jac=None`` to reduce the
        number of Jacobian elements estimated by finite differences.
    vectorized : bool, optional
        Whether `fun` is implemented in a vectorized fashion. A vectorized
        implementation offers no advantages for this solver. Default is False.

    Attributes
    ----------
    n : int
        Number of equations.
    status : string
        Current status of the solver: 'running', 'finished' or 'failed'.
    t_bound : float
        Boundary time.
    direction : float
        Integration direction: +1 or -1.
    t : float
        Current time.
    y : ndarray
        Current state.
    t_old : float
        Previous time. None if no steps were made yet.
    nfev : int
        Number of evaluations of the right-hand side.
    njev : int
        Number of evaluations of the Jacobian.

    References
    ----------
    .. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
           Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
           pp. 55-64, 1983.
    .. [2] L. Petzold, "Automatic selection of methods for solving stiff and
           nonstiff systems of ordinary differential equations", SIAM Journal
           on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
           1983.
    Ng        gMbP?gư>Fc              
      s   t | t ||||| |d kr*d}nt|||}|| j9 }|tjkrPd}n|dkr`td|dk rptdt||	| j	\}}	t
| j|
}|jd||	|||||d ||| | j|jjd< |jj|jjd< || _d S )Nr   z`max_step` must be positive.z`min_step` must be nonnegative.Zlsoda)rtolatolmax_stepmin_step
first_steplbanduband   )r   super__init__r   	directionnpinf
ValueErrorr   nr   funZset_integratorZset_initial_valuet_bound_integratorrwork	call_args_lsoda_solver)selfr   t0Zy0r   r   r   r   r
   r   jacr   r   Z
vectorizedZ
extraneoussolver	__class__ >/tmp/pip-unpacked-wheel-96ln3f52/scipy/integrate/_ivp/lsoda.pyr   m   s0    

  zLSODA.__init__c              	   C   s   | j }|j}|jd }d|jd< ||j|jp4dd |j|j| j|j	|j
\|_|_||jd< | r|j| _|j| _|jd | _|jd | _dS dS d S )N      c                   S   s   d S )Nr%   r%   r%   r%   r&   <lambda>       z"LSODA._step_impl.<locals>.<lambda>   )TN)FzUnexpected istate in LSODA.)r   r   r   runfr!   Z_ytr   Zf_paramsZ
jac_paramsZ
successfulyiworkZnjevZnlu)r   r"   Z
integratorZitaskr%   r%   r&   
_step_impl   s*    

     
zLSODA._step_implc                 C   sl   | j jj}| j jj}|d }|d }tj|dd|d | j   | j|d fdd }t| j	| j
|||S )N         r   F)order)r   r   r0   r   r   Zreshaper   copyLsodaDenseOutputt_oldr.   )r   r0   r   r6   hyhr%   r%   r&   _dense_output_impl   s    

 
zLSODA._dense_output_impl)
__name__
__module____qualname____doc__r   r   r   r1   r<   __classcell__r%   r%   r#   r&   r	      s   e     #r	   c                       s$   e Zd Z fddZdd Z  ZS )r8   c                    s.   t  || || _|| _t|d | _d S )Nr   )r   r   r:   r;   r   Zarangep)r   r9   r.   r:   r6   r;   r#   r%   r&   r      s    zLsodaDenseOutput.__init__c                 C   sR   |j dkr"|| j | j | j }n"|| j | j | jd d d f  }t| j|S )Nr   )ndimr.   r:   rB   r   dotr;   )r   r.   xr%   r%   r&   
_call_impl   s    
"zLsodaDenseOutput._call_impl)r=   r>   r?   r   rF   rA   r%   r%   r#   r&   r8      s   r8   )Znumpyr   Zscipy.integrater   commonr   r   r   baser   r   r	   r8   r%   r%   r%   r&   <module>   s    -