U
    Hvf°#  ć                   @   sT   d dl mZ d dlZd dlmZ d dlmZmZ ddl	m
Z
mZ dgZdd
dZdS )é    )ŚIterableN)Ś_asarray_validated)Ś
block_diagŚLinAlgErroré   )Ś_compute_lworkŚget_lapack_funcsŚcossinFTc           -      C   s  |s
|r|dkrdnt |}|dkr*dnt |}t| dd} tj| j sZtd | j”| jd }||kst|dkrtd || jd ”||ks|dkr°td || jd ”| d|d|f | d||df | |dd|f | |d|df f\}}	}
}n$t| ts td	nt	| d
kr@td t	| ”dd | D \}}	}
}t
ddddg||	|
|gD ](\}}|jd dkrptd |”qp|j\}}|j\}}|	j||fkrŌtd ||f|	j”|
j||fkrśtd ||f|
j”|| || kr$td || || ”|| }tdd ||	|
|fD }|rPdnd}t||d g||	|
|g\}}t||||d}|r|d |d dnd|i}|f ||	|
|||||d|d
|^ }}}}}}}|j| }|dk rütd | |”|dkrtd  ||”|r.||f|||ffS t||}t||}t t |””} t t |””}!t|||| || }"t|||" }#t||| |" }$t|| ||" }%t|| || |" }&tjt |#|$|%|&|"g”|jd!}'tj||f|jd!}(|'d|#d|#f |(d|#d|#f< |#|" })|#|" |$ }*|#|% |& d"|"  }+|#|% |& d"|"  |$ },|rr|'d|$d|$f n|'d|$d|$f  |(|)|*|+|,f< ||& |" })||& |" |%
  }*|#|" }+|#|" |% },|rę|'d|%d|%f  n|'d|%d|%f |(|)|*|+|,f< |'d|&d|&f |(|||& |||& f< | |(|#|#|" |#|#|" f< | |(||& ||& |" |"|% |& d"|" |% |& f< |#})|#|" }*|#|% |& |" }+|#|% |& d"|"  },|rĄ|!n|! |(|)|*|+|,f< |rā|! n|!|(||& ||& |" |#|#|" f< ||(|fS )#u»  
    Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.

    X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
    where upper left block has the shape of ``(p, q)``::

                                   ā                   ā
                                   ā I  0  0 ā 0  0  0 ā
        ā           ā   ā         āā 0  C  0 ā 0 -S  0 āā         ā*
        ā X11 ā X12 ā   ā U1 ā    āā 0  0  0 ā 0  0 -I āā V1 ā    ā
        ā āāāāā¼āāāā ā = āāāāāā¼āāāāāāāāāāāāāāāā¼āāāāāāāāāāāāāāāā¼āāāāā
        ā X21 ā X22 ā   ā    ā U2 āā 0  0  0 ā I  0  0 āā    ā V2 ā
        ā           ā   ā         āā 0  S  0 ā 0  C  0 āā         ā
                                   ā 0  0  I ā 0  0  0 ā
                                   ā                   ā

    ``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
    dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
    respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
    matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.

    Moreover, the rank of the identity matrices are ``min(p, q) - r``,
    ``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
    respectively.

    X can be supplied either by itself and block specifications p, q or its
    subblocks in an iterable from which the shapes would be derived. See the
    examples below.

    Parameters
    ----------
    X : array_like, iterable
        complex unitary or real orthogonal matrix to be decomposed, or iterable
        of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
        omitted.
    p : int, optional
        Number of rows of the upper left block ``X11``, used only when X is
        given as an array.
    q : int, optional
        Number of columns of the upper left block ``X11``, used only when X is
        given as an array.
    separate : bool, optional
        if ``True``, the low level components are returned instead of the
        matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
        ``u``, ``cs``, ``vh``.
    swap_sign : bool, optional
        if ``True``, the ``-S``, ``-I`` block will be the bottom left,
        otherwise (by default) they will be in the upper right block.
    compute_u : bool, optional
        if ``False``, ``u`` won't be computed and an empty array is returned.
    compute_vh : bool, optional
        if ``False``, ``vh`` won't be computed and an empty array is returned.

    Returns
    -------
    u : ndarray
        When ``compute_u=True``, contains the block diagonal orthogonal/unitary
        matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
        (``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
        this contains the tuple of ``(U1, U2)``.
    cs : ndarray
        The cosine-sine factor with the structure described above.
         If ``separate=True``, this contains the ``theta`` array containing the
         angles in radians.
    vh : ndarray
        When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
        matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
        (``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
        this contains the tuple of ``(V1H, V2H)``.

    References
    ----------
    .. [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
           Algorithms, 50(1):33-65, 2009.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cossin
    >>> from scipy.stats import unitary_group
    >>> x = unitary_group.rvs(4)
    >>> u, cs, vdh = cossin(x, p=2, q=2)
    >>> np.allclose(x, u @ cs @ vdh)
    True

    Same can be entered via subblocks without the need of ``p`` and ``q``. Also
    let's skip the computation of ``u``

    >>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
    ...                      compute_u=False)
    >>> print(ue)
    []
    >>> np.allclose(x, u @ cs @ vdh)
    True

    Nr   T)Zcheck_finitez?Cosine Sine decomposition only supports square matrices, got {}r   zinvalid p={}, 0<p<{} must holdzinvalid q={}, 0<q<{} must holdzJWhen p and q are None, X must be an Iterable containing the subblocks of Xé   zAWhen p and q are None, exactly four arrays should be in X, got {}c                 S   s   g | ]}t  |”qS © )ŚnpZ
atleast_2d©Ś.0Śxr   r   ś?/tmp/pip-unpacked-wheel-96ln3f52/scipy/linalg/_decomp_cossin.pyŚ
<listcomp>   s     zcossin.<locals>.<listcomp>Śx11Śx12Śx21Śx22z{} can't be emptyz*Invalid x12 dimensions: desired {}, got {}z*Invalid x21 dimensions: desired {}, got {}zThe subblocks have compatible sizes but don't form a square array (instead they form a {}x{} array). This might be due to missing p, q arguments.c                 S   s   g | ]}t  |”qS r   )r   Ziscomplexobjr   r   r   r   r      s     ZuncsdZorcsdZ_lwork)ŚmŚpŚq)ŚlworkZlrworkr   F)
r   r   r   r   Z
compute_u1Z
compute_u2Zcompute_v1tZcompute_v2tZtransZsignsz+illegal value in argument {} of internal {}z{} did not converge: {})Śdtypeé   )Śintr   r   ŚequalŚshapeŚ
ValueErrorŚformatŚ
isinstancer   ŚlenŚzipŚanyr   r   Śtypecoder   r   ZdiagŚcosŚsinŚminZeyeŚmaxr   Śzeros)-ŚXr   r   ZseparateZ	swap_signZ	compute_uZ
compute_vhr   r   r   r   r   ŚnameŚblockZmmpZmmqZcplxZdriverŚcsdZ	csd_lworkr   Z
lwork_argsŚ_ŚthetaŚu1Śu2Zv1hZv2hŚinfoŚmethod_nameŚUZVDHŚcŚsŚrZn11Zn12Zn21Zn22ZIdŚCSŚxsZxeZysZyer   r   r   r	      sŽ    c
’
 ’ ’X’
’

 ’ ’ ż
’’ ūś

 ’


 $@@,4 0)NNFFTT)Ścollections.abcr   Znumpyr   Zscipy._lib._utilr   Zscipy.linalgr   r   Zlapackr   r   Ś__all__r	   r   r   r   r   Ś<module>   s         ’