U
    Gvf8D                  
   @   s   d Z ddlZddlZddlmZmZmZ ddlm	Z	 ddl
mZ ddlmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z( ddl)m*Z*m+Z+m,Z, d	d
 Z-dd Z.dd Z/dddZ0dS )a^  HiGHS Linear Optimization Methods

Interface to HiGHS linear optimization software.
https://highs.dev/

.. versionadded:: 1.5.0

References
----------
.. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex
           method." Mathematical Programming Computation, 10 (1), 119-142,
           2018. DOI: 10.1007/s12532-017-0130-5

    N   )_check_unknown_optionsOptimizeWarningOptimizeResult)warn)_highs_wrapper)CONST_I_INF	CONST_INFMESSAGE_LEVEL_NONEHIGHS_OBJECTIVE_SENSE_MINIMIZEMODEL_STATUS_NOTSETMODEL_STATUS_LOAD_ERRORMODEL_STATUS_MODEL_ERRORMODEL_STATUS_PRESOLVE_ERRORMODEL_STATUS_SOLVE_ERRORMODEL_STATUS_POSTSOLVE_ERRORMODEL_STATUS_MODEL_EMPTYMODEL_STATUS_OPTIMALMODEL_STATUS_INFEASIBLE$MODEL_STATUS_UNBOUNDED_OR_INFEASIBLEMODEL_STATUS_UNBOUNDED5MODEL_STATUS_REACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND%MODEL_STATUS_REACHED_OBJECTIVE_TARGETMODEL_STATUS_REACHED_TIME_LIMIT$MODEL_STATUS_REACHED_ITERATION_LIMITHIGHS_SIMPLEX_STRATEGY_CHOOSEHIGHS_SIMPLEX_STRATEGY_DUAL HIGHS_SIMPLEX_CRASH_STRATEGY_OFF)HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE*HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG(HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX0HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGEHIGHS_VAR_TYPE_CONTINUOUS)
csc_matrixvstackissparsec                  C   sv   ddt dtdtdtdtdtdtdtdtdt	dt
dtdtdtd	td
i}d}|| |\}}| d|  d| d}||fS )zCConverts HiGHS status number/message to SciPy status number/messageN)   z%HiGHS did not provide a status code. )r&    )   r'   )r   z&Optimization terminated successfully. )r   zTime limit reached. )r   zIteration limit reached. )r(   zThe problem is infeasible. )   zThe problem is unbounded. )r&   z(The problem is unbounded or infeasible. )r&   z*The HiGHS status code was not recognized. z(HiGHS Status z: ))r   r   r   r   r   r   r   MODEL_STATUS_RDOVUBr   r   r   r   r   r   r   get)highs_statushighs_messageZscipy_statuses_messagesZunrecognizedZscipy_statusZscipy_message r/   A/tmp/pip-unpacked-wheel-96ln3f52/scipy/optimize/_linprog_highs.py_highs_to_scipy_status_message;   sL                    
r1   c                 C   s$   t | }t | | t | |< | S )N)npisinfsignr	   )xZinfsr/   r/   r0   _replace_infX   s    
r6   c                 C   s   z||    W S  tk
r*   ||   Y S  tk
r   tt}|j| j}td| d|  dt	|
  d| d	tdd ||  Y S X d S )NzOption z is z, but only values in z are allowed. Using default: .r)   )
stacklevel)lowerAttributeErrorKeyErrorinspect	signature_linprog_highs
parametersdefaultr   setkeysr   )optionZ
option_strchoicessigZdefault_strr/   r/   r0   _convert_to_highs_enum_   s    
& rF   TFc           /      K   sF  t | t|	dttttddd}| \}}}}}}}}|j \}}t	| tj
 }|}|}|}t||f}t||f}t|st|rt||f}nt||f}t|}|t||t|||||||tt|||
d}t|}t|}t|}t|}|dkst|dkr td}n
t|}t||j|j|j|||||tj|
} d| kr| d }!t|!t|d }"t|!dt| }!nd\}!}"d	| kr| d	 }#t|#dt| }$t|#t|d }%t| d
 dddf }&t| d
 dddf }'nd\}$}%d\}&}'dddd}(| dd})| dd}*t|)|*\}+},d| krht| d nd}-|-|!|"t |!|$dt |"|%dt |-dkrdn|-| |'dt |-dkrdn||- |&d| d|+| d t!k|,| ddp| dd| dd}.t"|-rB|dk	rB|.#| dd| dd| ddd |.S )a  
    Solve the following linear programming problem using one of the HiGHS
    solvers:

    User-facing documentation is in _linprog_doc.py.

    Parameters
    ----------
    lp :  _LPProblem
        A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``.
    solver : "ipm" or "simplex" or None
        Which HiGHS solver to use.  If ``None``, "simplex" will be used.

    Options
    -------
    maxiter : int
        The maximum number of iterations to perform in either phase. For
        ``solver='ipm'``, this does not include the number of crossover
        iterations.  Default is the largest possible value for an ``int``
        on the platform.
    disp : bool
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration; default ``False``.
    time_limit : float
        The maximum time in seconds allotted to solve the problem; default is
        the largest possible value for a ``double`` on the platform.
    presolve : bool
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if presolve is
        to be disabled.
    dual_feasibility_tolerance : double
        Dual feasibility tolerance.  Default is 1e-07.
        The minimum of this and ``primal_feasibility_tolerance``
        is used for the feasibility tolerance when ``solver='ipm'``.
    primal_feasibility_tolerance : double
        Primal feasibility tolerance.  Default is 1e-07.
        The minimum of this and ``dual_feasibility_tolerance``
        is used for the feasibility tolerance when ``solver='ipm'``.
    ipm_optimality_tolerance : double
        Optimality tolerance for ``solver='ipm'``.  Default is 1e-08.
        Minimum possible value is 1e-12 and must be smaller than the largest
        possible value for a ``double`` on the platform.
    simplex_dual_edge_weight_strategy : str (default: None)
        Strategy for simplex dual edge weights. The default, ``None``,
        automatically selects one of the following.

        ``'dantzig'`` uses Dantzig's original strategy of choosing the most
        negative reduced cost.

        ``'devex'`` uses the strategy described in [15]_.

        ``steepest`` uses the exact steepest edge strategy as described in
        [16]_.

        ``'steepest-devex'`` begins with the exact steepest edge strategy
        until the computation is too costly or inexact and then switches to
        the devex method.

        Curently, using ``None`` always selects ``'steepest-devex'``, but this
        may change as new options become available.

    mip_max_nodes : int
        The maximum number of nodes allotted to solve the problem; default is
        the largest possible value for a ``HighsInt`` on the platform.
        Ignored if not using the MIP solver.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        ``unknown_options`` is non-empty, a warning is issued listing all
        unused options.

    Returns
    -------
    sol : dict
        A dictionary consisting of the fields:

            x : 1D array
                The values of the decision variables that minimizes the
                objective function while satisfying the constraints.
            fun : float
                The optimal value of the objective function ``c @ x``.
            slack : 1D array
                The (nominally positive) values of the slack,
                ``b_ub - A_ub @ x``.
            con : 1D array
                The (nominally zero) residuals of the equality constraints,
                ``b_eq - A_eq @ x``.
            success : bool
                ``True`` when the algorithm succeeds in finding an optimal
                solution.
            status : int
                An integer representing the exit status of the algorithm.

                ``0`` : Optimization terminated successfully.

                ``1`` : Iteration or time limit reached.

                ``2`` : Problem appears to be infeasible.

                ``3`` : Problem appears to be unbounded.

                ``4`` : The HiGHS solver ran into a problem.

            message : str
                A string descriptor of the exit status of the algorithm.
            nit : int
                The total number of iterations performed.
                For ``solver='simplex'``, this includes iterations in all
                phases. For ``solver='ipm'``, this does not include
                crossover iterations.
            crossover_nit : int
                The number of primal/dual pushes performed during the
                crossover routine for ``solver='ipm'``.  This is ``0``
                for ``solver='simplex'``.
            ineqlin : OptimizeResult
                Solution and sensitivity information corresponding to the
                inequality constraints, `b_ub`. A dictionary consisting of the
                fields:

                residual : np.ndnarray
                    The (nominally positive) values of the slack variables,
                    ``b_ub - A_ub @ x``.  This quantity is also commonly
                    referred to as "slack".

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the right-hand side of the
                    inequality constraints, `b_ub`.

            eqlin : OptimizeResult
                Solution and sensitivity information corresponding to the
                equality constraints, `b_eq`.  A dictionary consisting of the
                fields:

                residual : np.ndarray
                    The (nominally zero) residuals of the equality constraints,
                    ``b_eq - A_eq @ x``.

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the right-hand side of the
                    equality constraints, `b_eq`.

            lower, upper : OptimizeResult
                Solution and sensitivity information corresponding to the
                lower and upper bounds on decision variables, `bounds`.

                residual : np.ndarray
                    The (nominally positive) values of the quantity
                    ``x - lb`` (lower) or ``ub - x`` (upper).

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the lower and upper
                    `bounds`.

            mip_node_count : int
                The number of subproblems or "nodes" solved by the MILP
                solver. Only present when `integrality` is not `None`.

            mip_dual_bound : float
                The MILP solver's final estimate of the lower bound on the
                optimal solution. Only present when `integrality` is not
                `None`.

            mip_gap : float
                The difference between the final objective function value
                and the final dual bound, scaled by the final objective
                function value. Only present when `integrality` is not
                `None`.

    Notes
    -----
    The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
    `marginals`, or partial derivatives of the objective function with respect
    to the right-hand side of each constraint. These partial derivatives are
    also referred to as "Lagrange multipliers", "dual values", and
    "shadow prices". The sign convention of `marginals` is opposite that
    of Lagrange multipliers produced by many nonlinear solvers.

    References
    ----------
    .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
            Mathematical programming 5.1 (1973): 1-28.
    .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
            simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
    !simplex_dual_edge_weight_strategyN)ZdantzigZdevexzsteepest-devexZsteepestN)rD   )presolveZsensesolver
time_limitZhighs_debug_leveldual_feasibility_toleranceipm_optimality_toleranceZlog_to_consolemip_max_nodesZoutput_flagprimal_feasibility_tolerancerG   Zsimplex_strategyZsimplex_crash_strategyZipm_iteration_limitZsimplex_iteration_limitmip_rel_gapr   slack)NNlambdaZ	marg_bndsr   z	highs-ipmzhighs-ds)ZipmZsimplexNstatusmessager5   )ZresidualZ	marginalsfunZsimplex_nitZipm_nitcrossover_nit)r5   rP   conZineqlinZeqlinr9   upperrT   rR   successrS   ZnitrU   mip_node_countmip_dual_boundg        mip_gap)rY   rZ   r[   )$r   rF   r   r    r   r!   Tcopyr2   Z	ones_likeinfZconcatenater%   r$   r#   r   r
   r   r   r6   sumemptyarrayr   ZindptrindicesdataZastypeZuint8lenr,   r1   r   r   anyupdate)/lprI   rJ   rH   ZdispmaxiterrK   rN   rL   rG   rO   rM   Zunknown_optionsZ&simplex_dual_edge_weight_strategy_enumcZA_ubZb_ubZA_eqZb_eqZboundsZx0ZintegralityZlbZubZlhs_ubZrhs_ubZlhs_eqZrhs_eqlhsrhsAoptionsresrP   rV   ZlamdaZmarg_ineqlinZ
marg_eqlinZ
marg_upperZ
marg_lowerZsolversr-   r.   rR   rS   r5   Zsolr/   r/   r0   r>   p   s     G

  
 





r>   )
NTFNNNNNNN)1__doc__r<   Znumpyr2   	_optimizer   r   r   warningsr   Z_highs._highs_wrapperr   Z_highs._highs_constantsr   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r+   r   r   r   r   r   r   r   r   r    r!   r"   Zscipy.sparser#   r$   r%   r1   r6   rF   r>   r/   r/   r/   r0   <module>   s(   t#          