U
    Gvf                     @   s"  d dl Z d dlZd dlmZmZmZmZmZm	Z	 d dlm
Z
mZmZ d dlZd dlZd dlmZ d dlZd dlmZ ddlmZmZ dd	d
dddddddg
ZG dd deZdd Zdd Zdd Zdd Zed  d  dZ!dd  Z"dFd%d&Z#e"e# dGd)d*Z$G d+d, d,Z%G d-d. d.Z&G d/d dZ'd0d1 Z(G d2d3 d3e&Z)G d4d5 d5Z*d6  e!d7< G d8d de)Z+G d9d: d:e+Z,G d;d< d<e)Z-G d=d> d>e)Z.G d?d@ d@e)Z/G dAdB dBe)Z0G dCd de&Z1dDdE Z2e2de+Z3e2d	e,Z4e2d
e-Z5e2de/Z6e2de.Z7e2de0Z8e2de1Z9dS )H    N)normsolveinvqrsvdLinAlgError)asarraydotvdot)get_blas_funcs)getfullargspec_no_self   )scalar_search_wolfe1scalar_search_armijobroyden1broyden2andersonlinearmixingdiagbroydenexcitingmixingnewton_krylovBroydenFirstKrylovJacobianInverseJacobianc                   @   s   e Zd ZdS )NoConvergenceN)__name__
__module____qualname__ r   r   :/tmp/pip-unpacked-wheel-96ln3f52/scipy/optimize/_nonlin.pyr      s   r   c                 C   s   t |  S N)npabsolutemaxxr   r   r   maxnorm   s    r&   c                 C   s*   t | } t| jtjs&t | tjdS | S )z:Return `x` as an array, of either floats or complex floatsdtype)r   r!   Z
issubdtyper(   Zinexactfloat_r$   r   r   r   _as_inexact"   s    r*   c                 C   s(   t | t |} t|d| j}|| S )z;Return ndarray `x` as same array subclass and shape as `x0`__array_wrap__)r!   Zreshapeshapegetattrr+   )r%   x0wrapr   r   r   _array_like*   s    r0   c                 C   s"   t |  st t jS t| S r    )r!   isfiniteallarrayinfr   vr   r   r   
_safe_norm1   s    r7   z
    F : function(x) -> f
        Function whose root to find; should take and return an array-like
        object.
    xin : array_like
        Initial guess for the solution
    a  
    iter : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    verbose : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    f_tol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    f_rtol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    x_tol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    x_rtol : float, optional
        Relative minimum step size. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in the
        direction given by the Jacobian approximation. Defaults to 'armijo'.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual.

    Returns
    -------
    sol : ndarray
        An array (of similar array type as `x0`) containing the final solution.

    Raises
    ------
    NoConvergence
        When a solution was not found.

    )Zparams_basicZparams_extrac                 C   s   | j r| j t | _ d S r    )__doc__
_doc_parts)objr   r   r   _set_doco   s    r;   krylovFarmijoTc                     sh  |
dkrt n|
}
t||||	||
d}t fdd} }t|tj}||}t|}t|}|	|
 || |dkr|dk	r|d }nd|jd  }|dkrd}n|d	krd}|d
krtdd}d}d}d}t|D ]$}||||}|r q&t||| }|j||d }t|dkr8td|rXt|||||\}}}}nd}|| }||}t|}||
 | |r||| ||d  |d  }||d  |k rt||}nt|t|||d  }|}|rtjd||
||f  tj  q|r"tt|nd}|rZ|j|||dkddd| d}t||fS t|S dS )a  
    Find a root of a function, in a way suitable for large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    jacobian : Jacobian
        A Jacobian approximation: `Jacobian` object or something that
        `asjacobian` can transform to one. Alternatively, a string specifying
        which of the builtin Jacobian approximations to use:

            krylov, broyden1, broyden2, anderson
            diagbroyden, linearmixing, excitingmixing

    %(params_extra)s
    full_output : bool
        If true, returns a dictionary `info` containing convergence
        information.
    raise_exception : bool
        If True, a `NoConvergence` exception is raise if no solution is found.

    See Also
    --------
    asjacobian, Jacobian

    Notes
    -----
    This algorithm implements the inexact Newton method, with
    backtracking or full line searches. Several Jacobian
    approximations are available, including Krylov and Quasi-Newton
    methods.

    References
    ----------
    .. [KIM] C. T. Kelley, "Iterative Methods for Linear and Nonlinear
       Equations". Society for Industrial and Applied Mathematics. (1995)
       https://archive.siam.org/books/kelley/fr16/

    N)f_tolf_rtolx_tolx_rtoliterr   c                    s   t  t|  S r    )r*   r0   flatten)zFr.   r   r   <lambda>       znonlin_solve.<locals>.<lambda>r   d   Tr=   F)Nr=   wolfezInvalid line searchg?gH.?g?gMbP?)tolr   z[Jacobian inversion yielded zero vector. This indicates a bug in the Jacobian approximation.      ?   z%d:  |F(x)| = %g; step %g
z0A solution was found at the specified tolerance.z:The maximum number of iterations allowed has been reached.)r   rM   )ZnitZfunstatussuccessmessage)r&   TerminationConditionr*   rC   r!   Z	full_liker4   r   
asjacobiansetupcopysize
ValueErrorrangecheckminr   _nonlin_line_searchupdater#   sysstdoutwriteflushr   r0   	iteration) rF   r.   jacobianrB   verbosemaxiterr>   r?   r@   rA   Ztol_normZline_searchcallbackZfull_outputZraise_exception	conditionfuncr%   dxFxFx_normgammaZeta_maxZeta_tresholdetanrN   rK   sZFx_norm_newZeta_Ainfor   rE   r   nonlin_solvet   s    -  


  
ro   :0yE>{Gz?c                    s   dg|gt |d gt t   d fdd	fdd}|dkrxt|d d	|d
\}}	}
n&|dkrtd d  |d\}}	|d krd}|   |d kr̈d }n}t |}|||fS )Nr   rM   Tc                    sT   | d krd S |    }|}t |d }|rP| d< |d< |d< |S )Nr   rM   )r7   )rm   storeZxtr6   p)rg   rf   tmp_Fxtmp_phitmp_sr%   r   r   phi  s    z _nonlin_line_search.<locals>.phic                    s0   t |  d  } | | dd |  | S )Nr   F)rr   )abs)rm   ds)rw   rdiffs_normr   r   derphi  s    z#_nonlin_line_search.<locals>.derphirJ   rq   )Zxtolaminr=   )r}   rL   )T)r   r   r   )rf   r%   rh   rg   Zsearch_typerz   Zsminr|   rm   Zphi1Zphi0ri   r   )	rg   rf   rw   rz   r{   rt   ru   rv   r%   r   rZ   	  s.     

rZ   c                   @   s.   e Zd ZdZdddddefddZdd ZdS )rQ   z
    Termination condition for an iteration. It is terminated if

    - |F| < f_rtol*|F_0|, AND
    - |F| < f_tol

    AND

    - |dx| < x_rtol*|x|, AND
    - |dx| < x_tol

    Nc                 C   sx   |d krt t jjd }|d kr(t j}|d kr6t j}|d krDt j}|| _|| _|| _|| _|| _	|| _
d | _d| _d S )NgUUUUUU?r   )r!   finfor)   epsr4   r@   rA   r>   r?   r   rB   f0_normr`   )selfr>   r?   r@   rA   rB   r   r   r   r   __init__C  s     zTerminationCondition.__init__c                 C   s   |  j d7  _ | |}| |}| |}| jd kr<|| _|dkrHdS | jd k	rbd| j | jk S t|| jko|| j | jko|| jko|| j |kS )Nr   r   rM   )	r`   r   r   rB   intr>   r?   r@   rA   )r   fr%   rg   Zf_normZx_normdx_normr   r   r   rX   [  s     





zTerminationCondition.check)r   r   r   r8   r&   r   rX   r   r   r   r   rQ   6  s    
rQ   c                   @   s:   e Zd ZdZdd Zdd ZdddZd	d
 Zdd ZdS )Jacobiana  
    Common interface for Jacobians or Jacobian approximations.

    The optional methods come useful when implementing trust region
    etc., algorithms that often require evaluating transposes of the
    Jacobian.

    Methods
    -------
    solve
        Returns J^-1 * v
    update
        Updates Jacobian to point `x` (where the function has residual `Fx`)

    matvec : optional
        Returns J * v
    rmatvec : optional
        Returns A^H * v
    rsolve : optional
        Returns A^-H * v
    matmat : optional
        Returns A * V, where V is a dense matrix with dimensions (N,K).
    todense : optional
        Form the dense Jacobian matrix. Necessary for dense trust region
        algorithms, and useful for testing.

    Attributes
    ----------
    shape
        Matrix dimensions (M, N)
    dtype
        Data type of the matrix.
    func : callable, optional
        Function the Jacobian corresponds to

    c              	      sp   ddddddddd	g	}|  D ]4\}}||kr:td
| |d k	rt |||  qt drl fdd _d S )Nr   r[   matvecrmatvecrsolveZmatmattodenser,   r(   zUnknown keyword argument %sc                      s      S r    )r   r   r   r   r   rG     rH   z#Jacobian.__init__.<locals>.<lambda>)itemsrV   setattrhasattr	__array__)r   kwnamesnamevaluer   r   r   r     s    
   
zJacobian.__init__c                 C   s   t | S r    )r   r   r   r   r   aspreconditioner  s    zJacobian.aspreconditionerr   c                 C   s   t d S r    NotImplementedErrorr   r6   rK   r   r   r   r     s    zJacobian.solvec                 C   s   d S r    r   r   r%   rF   r   r   r   r[     s    zJacobian.updatec                 C   s:   || _ |j|jf| _|j| _| jjtjkr6| || d S r    )rf   rU   r,   r(   	__class__rS   r   r[   r   r%   rF   rf   r   r   r   rS     s
    zJacobian.setupN)r   )	r   r   r   r8   r   r   r   r[   rS   r   r   r   r   r   v  s   %
r   c                   @   s,   e Zd Zdd Zedd Zedd ZdS )r   c                 C   s>   || _ |j| _|j| _t|dr(|j| _t|dr:|j| _d S )NrS   r   )ra   r   r   r[   r   rS   r   r   )r   ra   r   r   r   r     s    

zInverseJacobian.__init__c                 C   s   | j jS r    )ra   r,   r   r   r   r   r,     s    zInverseJacobian.shapec                 C   s   | j jS r    )ra   r(   r   r   r   r   r(     s    zInverseJacobian.dtypeN)r   r   r   r   propertyr,   r(   r   r   r   r   r     s
   	
c              
      s  t jjjt tr S t r2t tr2  S t t	j
r jdkrPtdt	t	   jd  jd kr|tdt fdd fdd fd	d fd
d j jdS t j r jd  jd krtdt fdd fdd fdd fdd j jdS t drzt drzt drztt dt d jt dt dt d j jdS t rG  fdddt}| S t trttttttttd   S tddS )zE
    Convert given object to one suitable for use as a Jacobian.
    rM   zarray must have rank <= 2r   r   zarray must be squarec                    s
   t  | S r    )r	   r5   Jr   r   rG     rH   zasjacobian.<locals>.<lambda>c                    s   t   j| S r    )r	   conjTr5   r   r   r   rG     rH   c                    s
   t  | S r    )r   r5   r   r   r   rG     rH   c                    s   t   j| S r    )r   r   r   r5   r   r   r   rG     rH   )r   r   r   r   r(   r,   zmatrix must be squarec                    s    |  S r    r   r5   r   r   r   rG     rH   c                    s      j|  S r    r   r   r5   r   r   r   rG     rH   c                    s
    | S r    r   r5   r   spsolver   r   rG     rH   c                    s      j| S r    r   r5   r   r   r   rG     rH   r,   r(   r   r   r   r   r[   rS   )r   r   r   r   r[   rS   r(   r,   c                       sL   e Zd Zdd Zd fdd	Z fddZd fdd		Z fd
dZdS )zasjacobian.<locals>.Jacc                 S   s
   || _ d S r    r$   r   r   r   r   r[     s    zasjacobian.<locals>.Jac.updater   c                    sB    | j }t|tjr t||S tj|r6||S tdd S NzUnknown matrix type)	r%   
isinstancer!   ndarrayr   scipysparse
isspmatrixrV   r   r6   rK   mr   r   r   r     s    


zasjacobian.<locals>.Jac.solvec                    s@    | j }t|tjr t||S tj|r4|| S tdd S r   )	r%   r   r!   r   r	   r   r   r   rV   r   r6   r   r   r   r   r     s    

zasjacobian.<locals>.Jac.matvecc                    sN    | j }t|tjr&t| j|S tj	|rB| j|S t
dd S r   )r%   r   r!   r   r   r   r   r   r   r   rV   r   r   r   r   r     s    
zasjacobian.<locals>.Jac.rsolvec                    sL    | j }t|tjr&t| j|S tj	|r@| j| S t
dd S r   )r%   r   r!   r   r	   r   r   r   r   r   rV   r   r   r   r   r     s    
zasjacobian.<locals>.Jac.rmatvecN)r   )r   )r   r   r   r[   r   r   r   r   r   r   r   r   Jac  s
   			r   )r   r   r   r   r   r   r<   z#Cannot convert object to a JacobianN) r   r   linalgr   r   r   inspectisclass
issubclassr!   r   ndimrV   Z
atleast_2dr   r,   r(   r   r   r-   r   callablestrdictr   BroydenSecondAndersonDiagBroydenLinearMixingExcitingMixingr   	TypeError)r   r   r   r   r   rR     sj    





 
 $

'rR   c                   @   s$   e Zd Zdd Zdd Zdd ZdS )GenericBroydenc                 C   s`   t | ||| || _|| _t| dr\| jd kr\t|}|rVdtt|d | | _nd| _d S )Nalpha      ?r   rL   )r   rS   last_flast_xr   r   r   r#   )r   r.   f0rf   Znormf0r   r   r   rS   .  s    zGenericBroyden.setupc                 C   s   t d S r    r   r   r%   r   rg   dfr   df_normr   r   r   _update<  s    zGenericBroyden._updatec              	   C   s@   || j  }|| j }| ||||t|t| || _ || _d S r    )r   r   r   r   )r   r%   r   r   rg   r   r   r   r[   ?  s
    

zGenericBroyden.updateN)r   r   r   rS   r   r[   r   r   r   r   r   -  s   r   c                   @   s   e Zd ZdZdd Zedd Zedd Zdd	 Zd
d Z	dddZ
dddZdd Zdd Zdd Zdd Zdd Zd ddZdS )!LowRankMatrixz
    A matrix represented as

    .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger

    However, if the rank of the matrix reaches the dimension of the vectors,
    full matrix representation will be used thereon.

    c                 C   s(   || _ g | _g | _|| _|| _d | _d S r    )r   csry   rl   r(   	collapsed)r   r   rl   r(   r   r   r   r   R  s    zLowRankMatrix.__init__c                 C   s^   t dddg|d d | g \}}}||  }t||D ]"\}}	||	| }
||||j|
}q6|S )Naxpyscaldotcr   )r   ziprU   )r6   r   r   ry   r   r   r   wcdar   r   r   _matvecZ  s    


zLowRankMatrix._matvecc                 C   s
  t |dkr| | S tddg|dd | g \}}|d }|tjt ||jd }t|D ]4\}}	t|D ]"\}
}|||
f  ||	|7  < qlq\tjt ||jd}t|D ]\}
}	||	| ||
< q|| }t||}| | }t||D ]\}}||||j	| }q|S )Evaluate w = M^-1 vr   r   r   Nr   r'   )
lenr   r!   identityr(   	enumeratezerosr   r   rU   )r6   r   r   ry   r   r   Zc0Air   jr   qr   Zqcr   r   r   _solved  s"     
zLowRankMatrix._solvec                 C   s.   | j dk	rt| j |S t|| j| j| jS )zEvaluate w = M vN)r   r!   r	   r   r   r   r   ry   r   r6   r   r   r   r     s    
zLowRankMatrix.matvecc                 C   s:   | j dk	rt| j j |S t|t| j| j| j	S )zEvaluate w = M^H vN)
r   r!   r	   r   r   r   r   r   ry   r   r   r   r   r   r     s    
zLowRankMatrix.rmatvecr   c                 C   s,   | j dk	rt| j |S t|| j| j| jS )r   N)r   r   r   r   r   r   ry   r   r   r   r   r     s    
zLowRankMatrix.solvec                 C   s8   | j dk	rt| j j |S t|t| j| j| j	S )zEvaluate w = M^-H vN)
r   r   r   r   r   r   r!   r   ry   r   r   r   r   r   r     s    
zLowRankMatrix.rsolvec                 C   sp   | j d k	r<|  j |d d d f |d d d f   7  _ d S | j| | j| t| j|jkrl|   d S r    )r   r   r   appendry   r   rU   collapse)r   r   r   r   r   r   r     s    
.zLowRankMatrix.appendc                 C   sl   | j d k	r| j S | jtj| j| jd }t| j| jD ]0\}}||d d d f |d d d f 	  7 }q6|S )Nr'   )
r   r   r!   r   rl   r(   r   r   ry   r   )r   Gmr   r   r   r   r   r     s    
*zLowRankMatrix.__array__c                 C   s"   t | | _d| _d| _d| _dS )z0Collapse the low-rank matrix to a full-rank one.N)r!   r3   r   r   ry   r   r   r   r   r   r     s    zLowRankMatrix.collapsec                 C   sD   | j dk	rdS |dkstt| j|kr@| jdd= | jdd= dS )zH
        Reduce the rank of the matrix by dropping all vectors.
        Nr   r   AssertionErrorr   r   ry   r   Zrankr   r   r   restart_reduce  s    
zLowRankMatrix.restart_reducec                 C   s>   | j dk	rdS |dkstt| j|kr:| jd= | jd= qdS )zK
        Reduce the rank of the matrix by dropping oldest vectors.
        Nr   r   r   r   r   r   simple_reduce  s    
zLowRankMatrix.simple_reduceNc                 C   s6  | j dk	rdS |}|dk	r |}n|d }| jrBt|t| jd }tdt||d }t| j}||k rldS t| jj}t| jj}t	|dd\}}t
||j }t|dd\}	}
}t
|t|}t
||j }t|D ]8}|dd|f  | j|< |dd|f  | j|< q| j|d= | j|d= dS )	a  
        Reduce the rank of the matrix by retaining some SVD components.

        This corresponds to the "Broyden Rank Reduction Inverse"
        algorithm described in [1]_.

        Note that the SVD decomposition can be done by solving only a
        problem whose size is the effective rank of this matrix, which
        is viable even for large problems.

        Parameters
        ----------
        max_rank : int
            Maximum rank of this matrix after reduction.
        to_retain : int, optional
            Number of SVD components to retain when reduction is done
            (ie. rank > max_rank). Default is ``max_rank - 2``.

        References
        ----------
        .. [1] B.A. van der Rotten, PhD thesis,
           "A limited memory Broyden method to solve high-dimensional
           systems of nonlinear equations". Mathematisch Instituut,
           Universiteit Leiden, The Netherlands (2003).

           https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

        NrM   r   r   Zeconomic)modeF)Zfull_matrices)r   r   rY   r   r#   r!   r3   r   ry   r   r	   r   r   r   rW   rT   )r   max_rankZ	to_retainrs   r   r   CDRUSZWHkr   r   r   
svd_reduce  s0    

zLowRankMatrix.svd_reduce)r   )r   )N)r   r   r   r8   r   staticmethodr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   G  s    

	


	r   a  
    alpha : float, optional
        Initial guess for the Jacobian is ``(-1/alpha)``.
    reduction_method : str or tuple, optional
        Method used in ensuring that the rank of the Broyden matrix
        stays low. Can either be a string giving the name of the method,
        or a tuple of the form ``(method, param1, param2, ...)``
        that gives the name of the method and values for additional parameters.

        Methods available:

            - ``restart``: drop all matrix columns. Has no extra parameters.
            - ``simple``: drop oldest matrix column. Has no extra parameters.
            - ``svd``: keep only the most significant SVD components.
              Takes an extra parameter, ``to_retain``, which determines the
              number of SVD components to retain when rank reduction is done.
              Default is ``max_rank - 2``.

    max_rank : int, optional
        Maximum rank for the Broyden matrix.
        Default is infinity (i.e., no rank reduction).
    Zbroyden_paramsc                   @   sV   e Zd ZdZdddZdd Zdd	 ZdddZdd ZdddZ	dd Z
dd ZdS )r   a  
    Find a root of a function, using Broyden's first Jacobian approximation.

    This method is also known as \"Broyden's good method\".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='broyden1'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df)

    which corresponds to Broyden's first Jacobian update

    .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx


    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       \"A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations\". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden1(fun, [0, 0])
    >>> sol
    array([0.84116396, 0.15883641])

    Nrestartc                    s   t  |_d _|d kr$tj}|_t|tr:d n|dd   |d }|d f   |dkrv fdd_	n@|dkr fdd_	n&|d	kr fd
d_	nt
d| d S )Nr   r   r   r   c                      s   j j  S r    )r   r   r   Zreduce_paramsr   r   r   rG   j  rH   z'BroydenFirst.__init__.<locals>.<lambda>simplec                      s   j j  S r    )r   r   r   r   r   r   rG   l  rH   r   c                      s   j j  S r    )r   r   r   r   r   r   rG   n  rH   z"Unknown rank reduction method '%s')r   r   r   r   r!   r4   r   r   r   _reducerV   )r   r   Zreduction_methodr   r   r   r   r   Y  s(    

zBroydenFirst.__init__c                 C   s.   t | ||| t| j | jd | j| _d S )Nr   )r   rS   r   r   r,   r(   r   r   r   r   r   rS   s  s    zBroydenFirst.setupc                 C   s
   t | jS r    )r   r   r   r   r   r   r   w  s    zBroydenFirst.todenser   c                 C   s>   | j |}t| s:| | j| j| j | j |S |S r    )	r   r   r!   r1   r2   rS   r   r   rf   )r   r   rK   rr   r   r   r   z  s
    zBroydenFirst.solvec                 C   s   | j |S r    )r   r   r   r   r   r   r   r     s    zBroydenFirst.matvecc                 C   s   | j |S r    )r   r   r   r   rK   r   r   r   r     s    zBroydenFirst.rsolvec                 C   s   | j |S r    )r   r   r   r   r   r   r     s    zBroydenFirst.rmatvecc           
      C   sD   |    | j|}|| j| }|t|| }	| j||	 d S r    )r   r   r   r   r
   r   
r   r%   r   rg   r   r   r   r6   r   r   r   r   r   r     s
    zBroydenFirst._update)Nr   N)r   )r   )r   r   r   r8   r   rS   r   r   r   r   r   r   r   r   r   r   r   #  s   5


c                   @   s   e Zd ZdZdd ZdS )r   aK  
    Find a root of a function, using Broyden's second Jacobian approximation.

    This method is also known as "Broyden's bad method".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='broyden2'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) df^\dagger / ( df^\dagger df)

    corresponding to Broyden's second method.

    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       "A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden2(fun, [0, 0])
    >>> sol
    array([0.84116365, 0.15883529])

    c           
      C   s:   |    |}|| j| }||d  }	| j||	 d S NrM   )r   r   r   r   r   r   r   r   r     s
    zBroydenSecond._updateN)r   r   r   r8   r   r   r   r   r   r     s   2r   c                   @   s4   e Zd ZdZdddZddd	Zd
d Zdd ZdS )r   a  
    Find a root of a function, using (extended) Anderson mixing.

    The Jacobian is formed by for a 'best' solution in the space
    spanned by last `M` vectors. As a result, only a MxM matrix
    inversions and MxN multiplications are required. [Ey]_

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    M : float, optional
        Number of previous vectors to retain. Defaults to 5.
    w0 : float, optional
        Regularization parameter for numerical stability.
        Compared to unity, good values of the order of 0.01.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='anderson'`` in particular.

    References
    ----------
    .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.anderson(fun, [0, 0])
    >>> sol
    array([0.84116588, 0.15883789])

    Nrq      c                 C   s2   t |  || _|| _g | _g | _d | _|| _d S r    )r   r   r   Mrg   r   rj   w0)r   r   r   r   r   r   r   r     s    
zAnderson.__init__r   c           	      C   s   | j  | }t| j}|dkr"|S tj||jd}t|D ]}t| j| |||< q:zt	| j
|}W n0 tk
r   | jd d = | jd d = | Y S X t|D ]*}||| | j| | j | j|    7 }q|S Nr   r'   )r   r   rg   r!   emptyr(   rW   r
   r   r   r   r   )	r   r   rK   rg   rl   df_fr   rj   r   r   r   r   r   %  s     

(zAnderson.solvec              	   C   s,  | | j  }t| j}|dkr"|S tj||jd}t|D ]}t| j| |||< q:tj||f|jd}t|D ]x}t|D ]j}t| j| | j| |||f< ||kr|| j	dkr||||f  t| j| | j| | j	d  | j  8  < q|qpt
||}	t|D ]*}
||	|
 | j|
 | j|
 | j    7 }q|S )Nr   r'   rM   )r   r   rg   r!   r   r(   rW   r
   r   r   r   )r   r   rg   rl   r   r   br   r   rj   r   r   r   r   r   <  s"    
:
(zAnderson.matvecc                 C   s   | j dkrd S | j| | j| t| j| j krP| jd | jd q&t| j}tj||f|jd}t	|D ]R}	t	|	|D ]B}
|	|
kr| j
d }nd}d| t| j|	 | j|
  ||	|
f< qqv|t|dj 7 }|| _d S )Nr   r'   rM   r   )r   rg   r   r   r   popr!   r   r(   rW   r   r
   Ztriur   r   r   )r   r%   r   rg   r   r   r   rl   r   r   r   wdr   r   r   r   S  s"    

*zAnderson._update)Nrq   r   )r   )r   r   r   r8   r   r   r   r   r   r   r   r   r     s
   F
	
r   c                   @   sV   e Zd ZdZdddZdd Zddd	Zd
d ZdddZdd Z	dd Z
dd ZdS )r   a,  
    Find a root of a function, using diagonal Broyden Jacobian approximation.

    The Jacobian approximation is derived from previous iterations, by
    retaining only the diagonal of Broyden matrices.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='diagbroyden'`` in particular.

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.diagbroyden(fun, [0, 0])
    >>> sol
    array([0.84116403, 0.15883384])

    Nc                 C   s   t |  || _d S r    r   r   r   r   r   r   r   r   r     s    
zDiagBroyden.__init__c                 C   s6   t | ||| tj| jd fd| j | jd| _d S )Nr   r   r'   )r   rS   r!   fullr,   r   r(   r   r   r   r   r   rS     s    zDiagBroyden.setupr   c                 C   s   | | j  S r    r   r   r   r   r   r     s    zDiagBroyden.solvec                 C   s   | | j  S r    r  r   r   r   r   r     s    zDiagBroyden.matvecc                 C   s   | | j   S r    r   r   r   r   r   r   r     s    zDiagBroyden.rsolvec                 C   s   | | j   S r    r  r   r   r   r   r     s    zDiagBroyden.rmatvecc                 C   s   t | j S r    )r!   diagr   r   r   r   r   r     s    zDiagBroyden.todensec                 C   s(   |  j || j |  | |d  8  _ d S r   r  r   r   r   r   r     s    zDiagBroyden._update)N)r   )r   r   r   r   r8   r   rS   r   r   r   r   r   r   r   r   r   r   r   q  s   (


r   c                   @   sN   e Zd ZdZdddZdddZdd	 Zdd
dZdd Zdd Z	dd Z
dS )r   a  
    Find a root of a function, using a scalar Jacobian approximation.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        The Jacobian approximation is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='linearmixing'`` in particular.

    Nc                 C   s   t |  || _d S r    r   r  r   r   r   r     s    
zLinearMixing.__init__r   c                 C   s   | | j  S r    r   r   r   r   r   r     s    zLinearMixing.solvec                 C   s   | | j  S r    r  r   r   r   r   r     s    zLinearMixing.matvecc                 C   s   | t | j S r    r!   r   r   r   r   r   r   r     s    zLinearMixing.rsolvec                 C   s   | t | j S r    r  r   r   r   r   r     s    zLinearMixing.rmatvecc                 C   s   t t | jd d| j S )Nr   )r!   r  r  r,   r   r   r   r   r   r     s    zLinearMixing.todensec                 C   s   d S r    r   r   r   r   r   r     s    zLinearMixing._update)N)r   )r   )r   r   r   r8   r   r   r   r   r   r   r   r   r   r   r   r     s   


r   c                   @   sV   e Zd ZdZdddZdd Zdd	d
Zdd ZdddZdd Z	dd Z
dd ZdS )r   a  
    Find a root of a function, using a tuned diagonal Jacobian approximation.

    The Jacobian matrix is diagonal and is tuned on each iteration.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='excitingmixing'`` in particular.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial Jacobian approximation is (-1/alpha).
    alphamax : float, optional
        The entries of the diagonal Jacobian are kept in the range
        ``[alpha, alphamax]``.
    %(params_extra)s
    NrL   c                 C   s    t |  || _|| _d | _d S r    )r   r   r   alphamaxbeta)r   r   r
  r   r   r   r     s    
zExcitingMixing.__init__c                 C   s2   t | ||| tj| jd f| j| jd| _d S r   )r   rS   r!   r  r,   r   r(   r  r   r   r   r   rS     s    zExcitingMixing.setupr   c                 C   s   | | j  S r    r  r   r   r   r   r     s    zExcitingMixing.solvec                 C   s   | | j  S r    r  r   r   r   r   r     s    zExcitingMixing.matvecc                 C   s   | | j   S r    r  r   r   r   r   r   r     s    zExcitingMixing.rsolvec                 C   s   | | j   S r    r  r   r   r   r   r     s    zExcitingMixing.rmatvecc                 C   s   t d| j S )Nr	  )r!   r  r  r   r   r   r   r     s    zExcitingMixing.todensec                 C   sL   || j  dk}| j|  | j7  < | j| j| < tj| jd| j| jd d S )Nr   )out)r   r  r   r!   Zclipr
  )r   r%   r   rg   r   r   r   incrr   r   r   r     s    zExcitingMixing._update)NrL   )r   )r   r  r   r   r   r   r     s   


r   c                   @   sD   e Zd ZdZdddZdd	 Zd
d ZdddZdd Zdd Z	dS )r   a  
    Find a root of a function, using Krylov approximation for inverse Jacobian.

    This method is suitable for solving large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    rdiff : float, optional
        Relative step size to use in numerical differentiation.
    method : str or callable, optional
        Krylov method to use to approximate the Jacobian.  Can be a string,
        or a function implementing the same interface as the iterative
        solvers in `scipy.sparse.linalg`. If a string, needs to be one of:
        ``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``,
        ``'tfqmr'``.

        The default is `scipy.sparse.linalg.lgmres`.
    inner_maxiter : int, optional
        Parameter to pass to the "inner" Krylov solver: maximum number of
        iterations. Iteration will stop after maxiter steps even if the
        specified tolerance has not been achieved.
    inner_M : LinearOperator or InverseJacobian
        Preconditioner for the inner Krylov iteration.
        Note that you can use also inverse Jacobians as (adaptive)
        preconditioners. For example,

        >>> from scipy.optimize import BroydenFirst, KrylovJacobian
        >>> from scipy.optimize import InverseJacobian
        >>> jac = BroydenFirst()
        >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

        If the preconditioner has a method named 'update', it will be called
        as ``update(x, f)`` after each nonlinear step, with ``x`` giving
        the current point, and ``f`` the current function value.
    outer_k : int, optional
        Size of the subspace kept across LGMRES nonlinear iterations.
        See `scipy.sparse.linalg.lgmres` for details.
    inner_kwargs : kwargs
        Keyword parameters for the "inner" Krylov solver
        (defined with `method`). Parameter names must start with
        the `inner_` prefix which will be stripped before passing on
        the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method='krylov'`` in particular.
    scipy.sparse.linalg.gmres
    scipy.sparse.linalg.lgmres

    Notes
    -----
    This function implements a Newton-Krylov solver. The basic idea is
    to compute the inverse of the Jacobian with an iterative Krylov
    method. These methods require only evaluating the Jacobian-vector
    products, which are conveniently approximated by a finite difference:

    .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega

    Due to the use of iterative matrix inverses, these methods can
    deal with large nonlinear problems.

    SciPy's `scipy.sparse.linalg` module offers a selection of Krylov
    solvers to choose from. The default here is `lgmres`, which is a
    variant of restarted GMRES iteration that reuses some of the
    information obtained in the previous Newton steps to invert
    Jacobians in subsequent steps.

    For a review on Newton-Krylov methods, see for example [1]_,
    and for the LGMRES sparse inverse method, see [2]_.

    References
    ----------
    .. [1] C. T. Kelley, Solving Nonlinear Equations with Newton's Method,
           SIAM, pp.57-83, 2003.
           :doi:`10.1137/1.9780898718898.ch3`
    .. [2] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004).
           :doi:`10.1016/j.jcp.2003.08.010`
    .. [3] A.H. Baker and E.R. Jessup and T. Manteuffel,
           SIAM J. Matrix Anal. Appl. 26, 962 (2005).
           :doi:`10.1137/S0895479803422014`

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0] + 0.5 * x[1] - 1.0,
    ...             0.5 * (x[1] - x[0]) ** 2]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.newton_krylov(fun, [0, 0])
    >>> sol
    array([0.66731771, 0.66536458])

    Nlgmres   
   c           	      K   sd  || _ || _ttjjjtjjjtjjjtjjj	tjjj
tjjjd||| _t|| j d| _| jtjjjkr|| jd< d| jd< | jdd n| jtjjjtjjjtjjj	fkr| jdd n^| jtjjjkr"|| jd< d| jd< | jd	g  | jd
d | jdd | jdd | D ]4\}}|dsJtd| || j|dd  < q*d S )N)bicgstabgmresr  cgsminrestfqmr)rc   r   r   r   rc   Zatolr   outer_kZouter_vZprepend_outer_vTZstore_outer_AvFZinner_zUnknown parameter %s   )preconditionerrz   r   r   r   r   r  r  r  r  r  r  getmethod	method_kw
setdefaultZgcrotmkr   
startswithrV   )	r   rz   r  Zinner_maxiterZinner_Mr  r   keyr   r   r   r   r     sD     	



zKrylovJacobian.__init__c                 C   s<   t | j }t | j }| jtd| td| | _d S )Nr   )rx   r.   r#   r   rz   omega)r   ZmxZmfr   r   r   _update_diff_step  s    z KrylovJacobian._update_diff_stepc                 C   sl   t |}|dkrd| S | j| }| | j||  | j | }tt|shtt|rhtd|S )Nr   z$Function returned non-finite results)	r   r!  rf   r.   r   r!   r2   r1   rV   )r   r6   nvZscr   r   r   r   r     s    
 zKrylovJacobian.matvecr   c                 C   sH   d| j kr$| j| j|f| j \}}n | j| j|fd|i| j \}}|S )NrK   )r  r  op)r   rhsrK   Zsolrn   r   r   r   r     s    
 zKrylovJacobian.solvec                 C   s<   || _ || _|   | jd k	r8t| jdr8| j|| d S )Nr[   )r.   r   r"  r  r   r[   )r   r%   r   r   r   r   r[     s    
zKrylovJacobian.updatec                 C   s|   t | ||| || _|| _tjj| | _| j	d krJt
|jjd | _	|   | jd k	rxt| jdrx| j||| d S )Nr   rS   )r   rS   r.   r   r   r   r   Zaslinearoperatorr$  rz   r!   r~   r(   r   r"  r  r   )r   r%   r   rf   r   r   r   rS     s    

zKrylovJacobian.setup)Nr  r  Nr  )r   )
r   r   r   r8   r   r"  r   r   r[   rS   r   r   r   r   r   "  s   e    
/


c                 C   s   t |j}|\}}}}}}}	tt|t| d |}
ddd |
D }|rXd| }ddd |
D }|rx|d }|rtd| d}|t| ||j|d }i }|	t
  t|| ||  }|j|_t| |S )	a  
    Construct a solver wrapper with given name and Jacobian approx.

    It inspects the keyword arguments of ``jac.__init__``, and allows to
    use the same arguments in the wrapper function, in addition to the
    keyword arguments of `nonlin_solve`

    Nz, c                 S   s   g | ]\}}d ||f qS )z%s=%rr   .0r   r6   r   r   r   
<listcomp>  s     z#_nonlin_wrapper.<locals>.<listcomp>c                 S   s   g | ]\}}d ||f qS )z%s=%sr   r&  r   r   r   r(    s     zUnexpected signature %sa  
def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None,
             f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
             tol_norm=None, line_search='armijo', callback=None, **kw):
    jac = %(jac)s(%(kwkw)s **kw)
    return nonlin_solve(F, xin, jac, iter, verbose, maxiter,
                        f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search,
                        callback)
)r   r   jacZkwkw)_getfullargspecr   listr   r   joinrV   r   r   r[   globalsexecr8   r;   )r   r)  	signatureargsvarargsvarkwdefaults
kwonlyargs
kwdefaults_kwargsZkw_strZkwkw_strwrappernsrf   r   r   r   _nonlin_wrapper  s,    	


r:  )r<   NFNNNNNNr=   NFT)r=   rp   rq   ):r\   Znumpyr!   Zscipy.linalgr   r   r   r   r   r   r   r	   r
   Zscipy.sparse.linalgr   Zscipy.sparser   r   Zscipy._lib._utilr   r*  Z_linesearchr   r   __all__	Exceptionr   r&   r*   r0   r7   r   stripr9   r;   ro   rZ   rQ   r   r   rR   r   r   r   r   r   r   r   r   r   r:  r   r   r   r   r   r   r   r   r   r   r   <module>   s           

4                  
   
-@D` Er@ D.? K,





